Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) October 17, 2019

Simple separation of 67Cu from bulk zinc by coprecipitation using hydrogen sulfide gas and silver nitrate

  • Tomoyuki Ohya EMAIL logo , Kotaro Nagatsu , Masayuki Hanyu , Katsuyuki Minegishi and Ming-Rong Zhang
From the journal Radiochimica Acta

Abstract

Copper-67 (67Cu), a feasible radionuclide for diagnosis and radiotherapy, is commercially generated from a bulk zinc (Zn) target using the 68Zn(p, 2p)67Cu and 68Zn(γ, p)67Cu nuclear reactions. Because it uses a large amount of zinc, the separation is complex – requiring a combination of three ion exchange columns – and is time-consuming (about 1 day). We developed a quick and easy separation method referred to as “double coprecipitation” using H2S gas and silver nitrate as coprecipitation agents in place of ion exchange columns. We compared this method with a conventional separation method using three ion exchange columns (AG50W-X8, AG1-X8, and Chelex-100) for a natural zinc (natZn) target irradiated by a proton beam. The product quality and the recovery rate with the new method were competitive with the conventional method, and the total operation time was reduced from 1 day to <3 h.


Corresponding author: Tomoyuki Ohya, PhD, Department of Radiopharmaceuticals Development, National Institutes for Quantum and Radiological Science and Technology (NIRS-QST), 4-9-1 Anagawa, Inage-ku, Chiba263-8555, Japan

Acknowledgements

We thank the cyclotron staff for their excellent operation of the NIRS-AVF-930 cyclotron and technical support. This study was supported by JSPS KAKENHI (Grant Number JP17K10386). We thank Gabrielle David, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

References

1. Blower, P. J., Lewis, J. S., Zweit, J.: Copper radionuclides and radiopharmaceuticals in nuclear medicine. Nucl. Med. Biol. 23, 957 (1996).10.1016/S0969-8051(96)00130-8Search in Google Scholar

2. Novak-Hofer, I., Schubiger, P. A.: Copper-67 as a therapeutic nuclide for radioimmunotherapy. Eur. J. Nucl. Med. 29, 821 (2002).10.1007/s00259-001-0724-ySearch in Google Scholar

3. Smith, N. A., Bowers, D. L., Ehst, D. A.: The production, separation, and use of 67Cu for radioimmunotherapy: a review. Appl. Radiat. Isot. 70, 2377 (2012).10.1016/j.apradiso.2012.07.009Search in Google Scholar

4. Jin, Z.-H., Furukawa, T., Ohya, T., Degardin, M., Sugyo, A., Tsuji, A. B., Fujibayashi, Y., Zhang, M.-R., Higashi, T., Boturyn, D., Dumy, P., Saga, T.: 67Cu-Radiolabeling of a multimeric RGD peptide for αVβ3 integrin-targeted radionuclide therapy: stability, therapeutic efficacy, and safety studies in mice. Nucl. Med. Comm. 38, 347 (2017).10.1097/MNM.0000000000000646Search in Google Scholar

5. Qaim, S. M., Scholten, B., Neumaier, B.: New developments in the production of theranostic pairs of radionuclides. J. Radioanal. Nucl. Chem. 318, 1493 (2018).10.1007/s10967-018-6238-xSearch in Google Scholar

6. National Nuclear Data Center: NuDat 2.7., Brookhaven National Laboratory, NY. Accessed March 12, 2019. http://www.nndc.bnl.gov/chart/.Search in Google Scholar

7. Mirzadeh, S., Mausner, L. F., Srivastava, S. C.: Production of no-carrier added 67Cu. Appl. Radiat. Isot. 37, 29 (1986).10.1016/0883-2889(86)90192-9Search in Google Scholar

8. Dasgupta, A. K., Mausner, L. F., Srivastava, S. C.: A new separation procedure for 67Cu from proton irradiated Zn. Appl. Radiat. Isot. 42, 371 (1991).10.1016/0883-2889(91)90140-VSearch in Google Scholar

9. Schwarzbach, R., Zimmermann, K., Bläuenstein, P., Smith, A., Schubiger, P. A.: Development of a simple and selective separation of 67Cu from irradiated zinc for use in antibody labelling: a comparison of methods. Appl. Radiat. Isot. 46, 329 (1995).10.1016/0969-8043(95)00010-BSearch in Google Scholar

10. Shikata, E.: Research of radioisotope production with fast neutrons, (VI) preparation of Cu-67. J. Nucl. Sci. Technol. 1, 171 (1964).Search in Google Scholar

11. Uddin, S., Uz-Zaman, R., Hossain, S. M., Qaim, S. M.: Radiochemical measurement of neutron-spectrum averaged cross sections for the formation of 64Cu and 67Cu via the (n,p) reaction at a TRIGA Mark-II reactor: feasibility of simultaneous production of the theragnostic pair 64Cu/67Cu. Radiochim. Acta 102, 473 (2014).10.1515/ract-2013-2199Search in Google Scholar

12. Johnsen, A. M., Heidrich, B. J., Durrant, C. B., Bascom, A. J., Ünlü, K.: Reactor production of 64Cu and 67Cu using enriched zinc target material. J. Radioanal. Nucl. Chem. 305, 61 (2015).10.1007/s10967-015-4032-6Search in Google Scholar

13. Mausner, L. F., Kolsky, K. L., Joshi, V., Srivastava, S. C.: Radionuclide development at BNL for nuclear medicine therapy. Appl. Radiat. Isot. 49, 285 (1998).10.1016/S0969-8043(97)00040-7Search in Google Scholar

14. Stoll, T., Kastleiner, S., Shubin, Y. N., Coenen, H. H., Qaim, S. M.: Excitation functions of proton induced reactions on 68Zn from threshold up to 71 MeV, with specific reference to the production of 67Cu. Radiochim. Acta 90, 309 (2002).10.1524/ract.2002.90.6.309Search in Google Scholar

15. Medvedev, D. G., Mausner, L. F., Meinken, G. E., Kurczak, S. O., Schnakenberg, H., Dodge, C. J., Korach, E. M., Srivastava, S. C.: Development of a large scale production of 67Cu from 68Zn at the high energy proton accelerator: Closing the 68Zn cycle. Appl. Radiat. Isot. 70, 423 (2012).10.1016/j.apradiso.2011.10.007Search in Google Scholar

16. Kastleiner, S., Coenen, H. H., Qaim, S. M.: Possibility of production of 67Cu at a small-sized cyclotron via the (p,α)-reaction on enriched 70Zn. Radiochim. Acta 84, 107 (1999).10.1524/ract.1999.84.2.107Search in Google Scholar

17. Hilgers, K., Stoll, T., Skakun, Y., Coenen, H. H., Qaim, S. M.: Cross section measurements of the nuclear reactions natZn(d,x)64Cu, 66Zn(d,α)64Cu and 68Zn(p, αn)64Cu for production of 64Cu and technical developments for small-scale production of 67Cu via the 70Zn(p,α)67Cu process. Appl. Radiat. Isot. 59, 343 (2003).10.1016/S0969-8043(03)00199-4Search in Google Scholar

18. Kozempel, J., Abbas, K., Simonelli, F., Bulgheroni, A., Holzwarth, U., Gibson, N.: Preparation of 67Cu via deuteron irradiation of 70Zn. Radiochim. Acta 100, 419 (2012).10.1524/ract.2012.1939Search in Google Scholar

19. Fujiki, K., Yano, S., Ito, T., Kumagai, Y., Murakami, Y., Kamigaito, O., Haba, H., Tanaka, K. A.: One-pot three-component double-click method for synthesis of [67Cu]-labeled biomolecular radiotherapeutics. Sci. Rep. 7, 1912 (2017).10.1038/s41598-017-02123-2Search in Google Scholar PubMed PubMed Central

20. Hosseini, S. F., Aboudzadeh, M., Sadeghi, M., Teymourlouy, A. A., Rostampour, M.: Assessment and estimation of 67Cu production yield via deuteron induced reactions on natZn and 70Zn. Appl. Radiat. Isot. 127, 137 (2017).10.1016/j.apradiso.2017.05.024Search in Google Scholar PubMed

21. Ayzatskiy, N. I., Dikiy, N. P., Dovbnya, A. N., Lyashko, Y. V., Nikiforov, V. I., Shramenko, B. I., Tenishev, A. E., Torgovkin, A.V., Uvarov, V. L.: Comparison of Cu-67 production at cyclotron and electron accelerator. 18th international conference on cyclotrons and their applications (Cyclotrons 2007), INFN, Giardini-Naxos, Oct. (2007).Search in Google Scholar

22. Starovoitova, V. N., Tchelidze, L., Wells, D. P.: Production of medical radioisotopes with linear accelerators. Appl. Radiat. Isot. 85, 39 (2014).10.1016/j.apradiso.2013.11.122Search in Google Scholar PubMed

23. Howard, S., Starovoitova, V. N.: Target optimization for the photonuclear production of radioisotopes. Appl. Radiat. Isot. 96, 162 (2015).10.1016/j.apradiso.2014.12.003Search in Google Scholar PubMed

24. Spahn, I., Coenen, H. H., Qaim, S. M.: Enhanced production possibility of the therapeutic radionuclides 64Cu, 67Cu and 89Sr via (n,p) reactions induced by fast spectral neutrons. Radiochim. Acta 92, 183 (2004).10.1524/ract.92.3.183.30489Search in Google Scholar

25. Al-Abyad, M., Spahn, I., Sudar, S., Morsy, M., Comsan, M. N. H., Csikai, J., Qaim, S. M., Coenen, H. H.: Nuclear data for production of the therapeutic radionuclides 32P, 64Cu, 67Cu, 89Sr, 90Y and 153Sm via the (n,p) reaction: Evaluation of excitation function and its validation via integral cross-section measurement using a 14 MeV d(Be) neutron source. Appl. Radiat. Isot. 64, 717 (2006).10.1016/j.apradiso.2005.12.020Search in Google Scholar PubMed

26. Kin, T., Nagai, Y., Iwamoto, N., Minato, F., Iwamoto, O., Hatsukawa, Y., Segawa, M., Harada, H., Konno, C., Ochiai, K., Takakura, K.: New production routes for medical isotopes 64Cu and 67Cu using accelerator neutrons. J. Phys. Soc. Jpn. 82, 034201 (2013).10.7566/JPSJ.82.034201Search in Google Scholar

27. Sato, N., Tsukada, K., Watanabe, S., Ishioka, N. S., Kawabata, M., Saeki, H., Nagai, Y., Kin, T., Minato, F., Iwamoto, N., Iwamoto, O.: First measurement of the radionuclide purity of the therapeutic isotope 67Cu produced by 68Zn(n,x) reaction using natC(d,n) neutrons. J. Phys. Soc. Jpn. 83, 073201 (2014).10.7566/JPSJ.83.073201Search in Google Scholar

28. Kawabata, M., Hashimoto, K., Saeki, H., Sato, N., Motoishi, S., Takakura, K., Konno, C., Nagai, Y.: Production and separation of 64Cu and 67Cu using 14 MeV neutrons. J. Radioanal. Nucl. Chem. 303, 1205 (2015).10.1007/s10967-014-3488-0Search in Google Scholar

29. Tanaka, S.: Reactions of nickel with alpha-particles. J. Phys. Soc. Jpn. 15, 2159 (1960).10.1143/JPSJ.15.2159Search in Google Scholar

30. Skakun, Y., Qaim, S. M.: Excitation function of the 64Ni(α,p)67Cu reaction for production of 67Cu. Appl. Radiat. Isot. 60, 33 (2004).10.1016/j.apradiso.2003.09.003Search in Google Scholar

31. Ohya, T., Nagatsu, K., Suzuki, H., Fukada, M., Minegishi, K., Hanyu, M., Zhang, M.-R.: Small-scale production of 67Cu for a preclinical study via the 64Ni(α,p)67Cu channel. Nucl. Med. Biol. 59, 56 (2018).10.1016/j.nucmedbio.2018.01.002Search in Google Scholar PubMed

32. Uddin, S., Kim, K., Nadeem, M., Sudár, S., Kim, G.: Measurements of excitation functions of α-particle induced reactions on natNi: possibility of production of the medical isotopes 61Cu and 67Cu. Radiochim. Acta 106, 87 (2018).10.1515/ract-2017-2837Search in Google Scholar

33. Gopalakrishna, A., Suryanarayana, S. V., Naik, H., Dixit, T. S., Nayak, B. K., Kumar, A., Maletha, P., Thakur, K., Deshpande, A., Krishnan, R., Kamaldeep, Banerjee, S., Saxena, A.: Production, separation and supply prospects of 67Cu with the development of fast neutron sources and photonuclear technology. Radiochim. Acta 106, 549 (2018).10.1515/ract-2017-2847Search in Google Scholar

34. Katabuchi, T., Watanabe, S., Ishioka, N. S., Iida, Y., Hanaoka, H., Endo, K., Matsuhashi, S.: Production of 67Cu via the 68Zn(p,2p)67Cu reaction and recovery of 68Zn target. J. Radioanal. Nucl. Chem. 277, 467 (2008).10.1007/s10967-007-7144-9Search in Google Scholar

35. Qaim, S. M., Sphan, I.: Development of novel radionuclide for medical applications. J. Label. Compd. Radiopharm. 61, 126 (2018).10.1002/jlcr.3578Search in Google Scholar

36. Maiti, M., Lahiri, S., Kumar, D., Choudhury, D.: Separation of no-carrier-added astatine radionuclides from α-particle irradiated lead bismuth eutectic target: a classical method. Appl. Radiat. Isot. 127, 227 (2017).10.1016/j.apradiso.2017.06.020Search in Google Scholar

37. Maiti, M., Lahiri, S., Tomar, B. S.: Separation of no-carrier-added 107,109Cd from proton induced silver target: classical chemistry still relevant. J. Radioanal. Nucl. Chem. 288, 115 (2011).10.1007/s10967-010-0957-ySearch in Google Scholar

38. Dutta, B., Lahiri, S., Tomar, B. S.: Separation of no-carrier-added rhenium from bulk tantalum by precipitation technique. Sep. Sci. Technol. 48, 2468 (2013).10.1080/01496395.2013.807827Search in Google Scholar

39. Minegishi, K., Nagatsu, K., Fukada, M., Suzuki, H., Ohya, T., Zhang, M.-R.: Production of scandium-43 and -47 from a powdery calcium oxide target via the Ca-nat/44(alpha,x)-channel. Appl. Radiat. Isot. 116, 8 (2016).10.1016/j.apradiso.2016.07.017Search in Google Scholar

40. O’Brien Jr., H. A., Barnes, J. W., Taylor, W. A., Thomas, K. E., Bentley, G. E.: Method of producing 67Cu. United States Patent, Patent Number: 4,487,738, Date of Patent: Dec. 11, 1984.Search in Google Scholar

41. Nagatsu, K., Fukada, M., Minegishi, K., Suzuki, H., Fukumura, T., Yamazaki, H., Suzuki, K.: Fully automated production of iodine-124 using a vertical beam. Appl. Radiat. Isot. 69, 146 (2011).10.1016/j.apradiso.2010.09.010Search in Google Scholar

42. SRIM-2013. The stopping and range of ions in matter. Download available from a web at http://www.srim.org/.Search in Google Scholar

43. Van So, L., Pellegrini, P., Katsifis, A., Howse, J., Greguric, I.: Radiochemical separation and quality assessment for the 68Zn target based 64Cu radioisotope production. J. Radioanal. Nucl. Chem. 277, 451 (2008).10.1007/s10967-007-7143-xSearch in Google Scholar

44. Ohya, T., Nagatsu, K., Suzuki, H., Fukada, M., Minegishi, K., Hanyu, M., Fukumura, T., Zhang, M.-R.: Efficient preparation of high-quality 64Cu for routine use. Nucl. Med. Biol. 43, 685 (2016).10.1016/j.nucmedbio.2016.07.007Search in Google Scholar

45. Qaim, S. M., Tárkányi, F., Capote, R. (Editors): Nuclear data for the production of therapeutic radionuclides, Technical Reports Series No. 473, IAEA, Vienna (2011), p. 1.Search in Google Scholar

46. Van Elteren, J. T., Kroon, K. J., Woroniecka, U. D., De Goeij, J. J. M.: Voltammetry detection of copper in high specific activity 64Cu. Appl. Radiat. Isot. 51, 15 (1999).10.1016/S0969-8043(98)00186-9Search in Google Scholar

47. Sugo, Y., Hashimoto, K., Kawabata, M., Saeki, H., Sato, S., Tsukada, K., Nagai, Y.: Application of 67Cu produced by 68Zn(n, ń p+d)67Cu to biodistribution study in tumor-bearing mice. J. Phys. Soc. Jpn. 86, 023201 (2017).10.7566/JPSJ.86.023201Search in Google Scholar

48. Q3D elemental impurities guidance for industry: U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER), MD (2015), p. 72.Search in Google Scholar

49. Nuclear Data Center: Table of isotope production cross sections (ACSELAM Library), Japan Atomic Energy Agency, Ibaraki. Accessed March 5, 2019 http://wwwndc.jaea.go.jp/ftpnd/sae/acl.html.Search in Google Scholar

50. Qaim, S. M.: The present and future of medical radionuclide production. Radiochim. Acta 100, 635 (2012).10.1524/ract.2012.1966Search in Google Scholar

Received: 2019-05-08
Accepted: 2019-09-20
Published Online: 2019-10-17
Published in Print: 2020-06-25

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2019-3168/html
Scroll to top button