Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 2, 2020

Multi-step purification method of water-soluble oligosaccharides produced from hardwood and softwood

  • Juliette Francillon EMAIL logo , Christine Chirat EMAIL logo , Claire Boisset and Laurine Buon
From the journal Holzforschung

Abstract

Pressurized hot water pretreatment was performed on softwood (SW) and hardwood (HW) chips following the same conditions (1 h at 170 °C) in order to partly hydrolyse hemicelluloses. The complete characterization of these sugar enriched autohydrolysates (AH) being rather complex, two different purification methods were conducted. Nanofiltration (NF) 1kDa membrane and ultrafiltration (UF) 3 and 5kDa membranes were used to separate oligosaccharides (OS) from undesired compounds and for their molar mass fractionation. Granulated activated charcoal (GAC) adsorption was also used for hydrolysates detoxification. The chemical nature of OS and side charge groups vary significantly depending of the fractions obtained, e. g. xylans' chain length is positively correlated with the degree of acetylation. UF at 5kDa allows for the total separation of galactoglucomannans (GGMs) from xylans, in SW AH, however, this result was not achieved with HW. From the acid soluble lignin (ASL) removal point of view, membrane filtration from 1kDa is more efficient than activated carbon treatment concerning HW AH, on the contrary to SW AH. Regarding the lignin to OS ratio, for both species, GAC leads to a better sugar purity.


Corresponding authors: Juliette Francillon, Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France, E-mail: ; and Christine Chirat, Université Grenoble Alpes, CNRS, Institute of Engineering Université Grenoble-Alpes (Grenoble INP), LGP2, F-38000 Grenoble, France, E-mail:

Funding source: French National Research Agency under the Investissements d'avenir program

Award Identifier / Grant number: ANR-15-IDEX-02

Funding source: PEPS Ingénierie Verte

Award Identifier / Grant number: INSIS 2018 2019

Acknowledgements

This work was developed in the framework of Glyco@Alps, supported by the French National Research Agency under the Investissements d’avenir program (ANR-15-IDEX-02).

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Part of this study was financed by CNRS under the frame of the PEPS Ingénierie Verte (INSIS 2018 2019).

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

  5. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Almeida, J.R.M., Bertilsson, M., and Gorwa-Grauslund, M.F. (2009). Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 82: 625, https://doi.org/10.1007/s00253-009-1875-1.Search in Google Scholar

Boucher, J., Chirat, C., and Lachenal, D. (2014). Extraction of hemicelluloses from wood in a pulp biorefinery, and subsequent fermentation into ethanol. Energy Convers. Manag. 88: 1120–1126, https://doi.org/10.1016/j.enconman.2014.05.104.Search in Google Scholar

Brasch, D.J. and Free, K.W. (1965). Prehydrolysis-Kraft pulping of Pinus radiata grown in New Zealand. Tappi. 48: 245–248.Search in Google Scholar

Capek, P., Kubackova, M., Alföldi, J., Bilisics, L., Liskova, D., and Kakoniova, D. (2000). Galactoglucomannan from the secondary cell wall of Picea abies L. Karst. Carbohyd. Res. 329: 635–645, https://doi.org/10.1016/s0008-6215(00)00210-x.Search in Google Scholar

Conner, A.H., and Lorenz, L.F. (1986). Kinetic modeling of hardwood prehydrolysis. Part III: water and dilute acetic acid prehydrolysis of southern red oak. Wood Fiber Sci. 18: 248–263.Search in Google Scholar

Curmi, H., Chirat, C., Brochier Salon, M.-C., and Lachenal, D. (2018). Effect of autohydrolysis on alkaline delignification of mixed hardwood chips and on lignin structure. Holzforschung. 72: 631–636, https://doi.org/10.1515/hf-2017-0196.Search in Google Scholar

De Cherisey H. (2015). Etat de l'art sur la production de molécules chimiques issues du bois en France. Report No 1401C0052. Agence de l'environnement et la maitrise de l'énergie: ADEME, Angers, France.Search in Google Scholar

Deloule, V., Boisset, C., Chroboczek, J., Toussaint, B., and Chirat, C. (2016). Preparation of softwood hemicellulose fractions for the study of their potential prebiotic effect. 14th EWLP, Autrans, France. Proceedings, pp. 83–86.Search in Google Scholar

Desharnais, L., Du, F., and Brosse, N. (2011). Optimization of galactoglucomannans and acidic arabinans recovery in softwood. Ind. Eng. Chem. Res. 50: 14217–14220, https://doi.org/10.1021/ie202273d.Search in Google Scholar

E4tech, RE-CORD and WUR. (2015). From the sugar platform to biofuels and biochemicals. Final report for the European Commission, contract No. ENER/C2/423-2012/SI2.673791.Search in Google Scholar

Fengel, D. and Wegener, G. (1984). Wood – chemistry, ultrastructure, reactions. De Gruyter, Berlin.10.1515/9783110839654Search in Google Scholar

Gullón, P., Gullón, B., Cardelle-Cobas, A., Alonso, J.L., Pintado, M., and Gomes, A.M. (2014). Effects of hemicellulose-derived saccharides on behavior of Lactobacilli under simulated gastrointestinal conditions. Food. Res. Int. 64: 880–888, https://doi.org/10.1016/j.foodres.2014.08.043.Search in Google Scholar

Gütsch, J.S. and Sixta H. (2010). Purification of Eucalyptus globulus water prehydrolyzates using the HiTAC process (high-temperature adsorption on activated charcoal). Holzforschung. 65: 511–518, https://doi.org/10.1515/hf.2011.065.Search in Google Scholar

Han, W., Zhao, C., Elder, T., Chen, K., Yang, R., Kim, D., Pu, Y., Hsieh, J., and Ragauskas, A. (2012). Study on the modification of bleached eucalyptus kraft pulp using birch xylan. Carbohyd. Polym. 88: 719–725, https://doi.org/10.1016/j.carbpol.2012.01.025.Search in Google Scholar

Jacobs A., Lundqvist J., Stålbrand H., Tjerneld F., and Dahlman O. (2002). Characterization of water-soluble hemicelluloses from spruce and aspen employing SEC/MALDI mass spectroscopy, Carbohyd. Res. 337: 711–717, https://doi.org/10.1016/s0008-6215(02)00054-x.Search in Google Scholar

Kleen, M., Pranovich, A., and Willför, S. (2016). Statistical modeling of pressurized hot-water batch extraction (PHWE) to produce hemicelluloses with desired properties. Holzforschung 70: 633–640, https://doi.org/10.1515/hf-2015-0048. In press.https://doi.org/10.1515/hf-2015-0048Search in Google Scholar

Lehtonen, M., Teräslahti, S., Xu, C., Yadav, M.P., Lampi, A.-M., and Mikkonen, K.S. (2016). Spruce galactoglucomannans inhibit lipidoxidation in rapeseed oil-in-water emulsions. Food Hydrocolloid. 58: 255–266, https://doi.org/10.1016/j.foodhyd.2016.03.006.Search in Google Scholar

Maekawa E., Ichizawa T., and Koshijima T. (1989). An evaluation of the acid-soluble lignin determination in analyses of lignin by the sulfuric acid method. J. Wood Chem. Technol. 9: 549–567, https://doi.org/10.1080/02773818908050315.Search in Google Scholar

McDonald-Wharry J. (2010). Characterisation of watersoluble polysaccharides produced during prehydrolysis of Pinus radiata. PhD Thesis of The University of Waikato, New Zealand.Search in Google Scholar

McKibbins, S.W., Harris, J.F., Saeman, J.F., and Neill, W.K. (1962). Chemical conversion of wood residues. Part V: kinetics of the acid catalyzed conversion of glucose to 5-hydroxymethyl-2-furaldehyde and levulinic acid. Forest Prod. J. 12: 17–23.10.1016/S0021-9673(01)92848-1Search in Google Scholar

Morais de Carvalho, D., Martinez-Abad, A., Evtuguin, D.V., Colodette, J.L., Lindstrom, M.E., Vilaplana, F., and Sevastyanova, O. (2017). Isolation and characterization of acetylated glucuronoarabinoxylan from sugarcane bagasse and straw. Carbohydr. Polym. 156: 223–234, https://doi.org/10.1016/j.carbpol.2016.09.022.Search in Google Scholar PubMed

Moure, A., Gullón, P., Domínguez, H., and Parajó, J.C. (2006). Advances in the manufacture, purification and applications of xylooligosaccharides as food additives and nutraceuticals. Process Biochem. 41: 1913–1923, https://doi.org/10.1016/j.procbio.2006.05.011.Search in Google Scholar

Myerly R.C., Nicholson, M.D., Katzen, R., and Taylor, J.M. (1981). The forest refinery. Chemtech. 11: 186–192.Search in Google Scholar

Oinonen, P., Krawczyk, H., Ek, M., Henriksson, G., and Moriana, R. (2016). Bioinspired composites from cross-linked galactoglucomannan and microfibrillatedcellulose: thermal, mechanical and oxygen barrier properties. Carbohyd. Polym. 136: 146–153, https://doi.org/10.1016/j.carbpol.2015.09.038.Search in Google Scholar PubMed

Peng F., Peng P., Xu F., and Sun RC. (2012). Fractional purification and bioconversion of hemicelluloses. Biotechnol. Adv. 30: 879–903, https://doi.org/10.1016/j.biotechadv.2012.01.018.Search in Google Scholar PubMed

Persin, Z., Stana-Kleinschek, K., Foster, T.J., Van Dam, J.E.G., Boeriu, C.G., and Navard, P. (2011). Challenges and opportunities in polysaccharides research and technology: the EPNOE views for the next decade in the areas of materials, food and health care. Carbohyd. Polym. 84: 22–32, https://doi.org/10.1016/j.carbpol.2010.11.044.Search in Google Scholar

Pranovich A., Holmbom B., and Willför S. (2016). Two-stage hot-water extraction of galactoglucomannans from spruce wood. J. Wood Chem. Technol. 36: 140–156, https://doi.org/10.1080/02773813.2015.1104543.Search in Google Scholar

Rivas, S., González-Muñoz, M., Vila, C., Santos, V., and Parajó, J.C. (2013). Manufacture of levulinic acid from pine wood hemicelluloses: a kinetic assessment. Ind. Eng. Chem. Res. 52: 3951–3957, https://doi.org/10.1021/ie3018725.Search in Google Scholar

Sanglard, M. (2013). Production simultanée de fibres cellulosiques blanchies et de polyxylosides d'alkyle dans le cadre d'une bioraffinerie papetière. PhD Thesis of University Grenoble Alpes, France.Search in Google Scholar

Silva, A., Marcelino, H., Gomes, M., Oliveira, E., Nagashima, T., and Egito, E. (2012). Xylan, a promising hemicellulose for pharmaceutical use. In: Verbeek, C.J.R. (Ed.), Products and applications of biopolymers. InTech, Rijeka. pp. 61–84.10.5772/33070Search in Google Scholar

Singh, R.D., Banerjee, J., and Arora, A. (2015). Prebiotic potential of oligosaccharides: a focus on xylan derived oligosaccharides. Bioact. Carbohydr. Diet. Fibre. 5: 19–30, https://doi.org/10.1016/j.bcdf.2014.11.003.Search in Google Scholar

Standards: Tappi standard. (2000). UM 250. Acid-soluble lignin in wood and pulp.Search in Google Scholar

Tarasov, D., Leitch, M., and Fatehi, P. (2018). Flow through autohydrolysis of spruce wood chips and lignin carbohydrate complex formation. Cellulose 25: 1377–1393, https://doi.org/10.1007/s10570-017-1643-9. In press.https://doi.org/10.1007/s10570-017-1643-9Search in Google Scholar

Teleman, A., Lundqvist, J., Tjerneld, F., Stålbrand, H., and Dahlman, O. (2000). Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing 1H and 13C NMR spectroscopy. Carbohyd. Res. 329: 807–815, https://doi.org/10.1016/S0008-6215(00)00249-4.Search in Google Scholar

Timell, T.E., and Syracuse, N.Y. (1967). Recent progress in the chemistry of wood hemicelluloses. Wood Sci. Technol 1: 45–70, https://doi.org/10.1007/BF00592255.https://doi.org/10.1007/BF00592255Search in Google Scholar

Tunc, M.S., and Van Heiningen, A.R.P. (2008). Hydrothermal dissolution of mixed southern hardwoods. Holzforschung 62: 539–545, https://doi.org/10.1515/HF.2008.100.https://doi.org/10.1515/HF.2008.100Search in Google Scholar

Xu, C., Leppänen, A.-S., Eklund, P., Holmlund, P., Sjöholm, R., Sundberg, K. and Willför, S. (2010). Acetylation and characterization of spruce (Picea abies) galactoglucomannans. Carbohyd. Res. 345: 810–816, https://doi.org/10.1016/j.carres.2010.01.007.Search in Google Scholar PubMed

Received: 2019-11-06
Accepted: 2020-04-19
Published Online: 2020-06-02

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.5.2024 from https://www.degruyter.com/document/doi/10.1515/hf-2019-0273/html
Scroll to top button