Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) May 4, 2020

Crystal structure of rac-trans-N,N′-bis(3-bromo-5-chlorosalicylidene)-1,2-cyclohexanediamine, C20H18Br2Cl2N2O2

  • Fang Jiang , Yan Xu , Xun Ma , Jiayi Li and Qiong Wu ORCID logo EMAIL logo

Abstract

C20H18Br2Cl2N2O2, monoclinic, P21/c (no. 14), a = 10.6105(8) Å, b = 17.1664(9) Å, c = 11.9848(9) Å, β = 97.682(3)°, V = 2163.4(3) Å3, Z = 4, Rgt(F) = 0.0330, wRref(F2) = 0.0823, T = 100(2) K.

CCDC no.: 1979511

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Yellow block
Size:0.18 × 0.16 × 0.12 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:4.01 mm−1
Diffractometer, scan mode:Bruker APEX-II, φ and ω
θmax, completeness:25.7°, 98%
N(hkl)measured, N(hkl)unique, Rint:11817, 4049, 0.037
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 3084
N(param)refined:255
Programs:CrysAlisPRO [1], SHELX [2], Olex2 [3], Diamond [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Br10.28711(4)0.83478(3)0.41750(5)0.04654(15)
Br21.01834(4)1.17688(2)0.78360(4)0.03418(13)
Cl10.49679(13)1.10668(6)0.28352(10)0.0450(3)
Cl20.75340(10)1.03765(6)1.09741(9)0.0353(3)
O10.5643(3)0.79247(15)0.4729(3)0.0293(7)
H10.63940.78390.49560.044*
O21.0047(3)1.01249(15)0.6894(2)0.0270(6)
H21.00760.96680.66970.041*
N10.8046(3)0.81448(17)0.4948(3)0.0220(7)
N20.9631(3)0.86343(17)0.6950(3)0.0218(7)
C10.5520(4)0.8644(2)0.4302(3)0.0218(8)
C20.4316(4)0.8956(2)0.3972(3)0.0270(9)
C30.4143(4)0.9689(2)0.3517(3)0.0304(10)
H30.33280.98840.33030.036*
C40.5199(4)1.0132(2)0.3384(3)0.0275(9)
C50.6412(4)0.9852(2)0.3689(3)0.0237(8)
H50.71121.01560.35870.028*
C60.6582(3)0.9108(2)0.4153(3)0.0203(8)
C70.7867(4)0.8809(2)0.4473(3)0.0227(8)
H70.85620.91040.43310.027*
C80.9344(3)0.7854(2)0.5241(3)0.0207(8)
H80.99360.81900.49010.025*
C90.9398(4)0.7024(2)0.4770(3)0.0258(9)
H9A0.87600.67040.50580.031*
H9B0.92050.70380.39560.031*
C101.0710(4)0.6661(2)0.5099(3)0.0286(9)
H10A1.06990.61270.48360.034*
H10B1.13320.69450.47340.034*
C111.1098(4)0.6677(2)0.6363(4)0.0325(10)
H11A1.19580.64800.65390.039*
H11B1.05380.63400.67230.039*
C121.1031(4)0.7504(2)0.6820(3)0.0302(9)
H12A1.12510.74980.76320.036*
H12B1.16420.78310.65070.036*
C130.9702(4)0.7844(2)0.6518(3)0.0233(8)
H130.90930.75150.68490.028*
C140.9029(4)0.8746(2)0.7788(3)0.0229(8)
H140.86410.83250.80910.027*
C150.8931(3)0.9515(2)0.8286(3)0.0207(8)
C160.8332(4)0.9591(2)0.9249(3)0.0233(8)
H160.79800.91550.95500.028*
C170.8259(4)1.0301(2)0.9753(3)0.0235(8)
C180.8794(4)1.0956(2)0.9331(3)0.0254(9)
H180.87501.14360.96820.030*
C190.9397(4)1.0885(2)0.8377(3)0.0219(8)
C200.9463(4)1.0171(2)0.7828(3)0.0237(9)

Source of material

All hydrogen atoms were placed in calculated positions and refined using a riding model. Aromatic C—H distances were set to 0.93 Å and their Uiso set to 1.2 times the Ueq of the parent atom.

Experimental details

All commercially available reagents were used as supplied. A mixture of 3-bromo-5-chlorosalicylaldehyde 0.471 g (1.0 mmol) and (±)-1.2-cyclohexanediamin 0.10 mL was dissolved in 20 mL of methanol and stirred for 30 min at room temperature. The yellow suspension was then refluxed at 60 °C for 3 h and filtrated. The colorless crystals of the title compound slowly appears after one week.

Comment

Because of the special coordination ability, flexible spatial and electronic effects, halogenated Schiff-base ligand have attracted more and more attention in coordination chemistry [5], [6], [7], [8], [9], [10]. In order to explore the relationship between molecular structure and physicochemical properties of Schiff-base compound, we report a new salen-type Schiff base.

The title compound crystallizes in the space group P21/c, thus the unit cell contains two pairs of racemic molecules, and overall exhibiting centrosymmetric configuration. The bond lengths and angles are within the normal ranges and are closed to the related structures [11].

There are two strong intramolecular O—H⋯N hydrogen bonds between the hydroxyl group and the nitrogen atom, with the distance of O(1)–H(1)⋯N(1) and O(2)–H(2)⋯N(2) are 1.8310(3) and 1.8714(3) Å, respectively. Further intermolecular C—H⋯π hydrogen bonds and aromatic face-to-face π-π interactions play important roles for the crystal packing. [Interactions: C(11)—H(11B)⋯Cg(1) with distance = 3.662(4) Å; Cg1⋯Cg1 (1 − X, −Y, −Z) and Cg3⋯Cg3 (1 − X, −Y, 1 − Z). Centroid-to-centroid distance = 3.638(2) and 3.586(2) Å, respectively, where Cg1 is the centroid of the C1—C6 ring and Cg3 is the centroid of the C15—C20 ring.]

Acknowledgements

This work was supported by Fund for Less Developed Regions of the National Natural Science Foundation of China (no. 31760257); Joint Basic Research Program (partial) of Yunnan Local Undergraduate Universities (2017FH001-002); The reserve academic and technical leaders of Yunnan Province (2019HB098).

References

1. Agilent Technologies: CrysAlisPRO Software system, Agilent Technologies UK Ltd, Oxford, UK (2015).Search in Google Scholar

2. Sheldrick, G.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

3. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H.: OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42 (2010) 339–341.10.1107/S0021889808042726Search in Google Scholar

4. Brandenburg, K.: DIAMOND. Visual Crystal Structure Information System. Version 3.2i. Crystal Impact, Bonn. Germany (2012).Search in Google Scholar

5. Egekenze, R.; Gultneh, Y.; Butcher, R.: Catalysis of alkene epoxidation by manganese(II) and (III) complexes of both Schiff base and reduced Schiff base ligands utilizing environmentally benign H2O2. Polyhedron 144 (2018) 198–209.10.1016/j.poly.2018.01.008Search in Google Scholar

6. Tadavi, S. K.; Yadav, A. A.; Bendre, R. S.: Synthesis and characterization of a novel Schiff base of 1,2-diaminopropane with substituted salicyaldehyde and its transition metal complexes: single crystal structures and biological activities. J. Mol. Struct. 1152 (2018) 223–231.10.1016/j.molstruc.2017.09.112Search in Google Scholar

7. Ariyaeifar, M.; Rudbari, H. A.; Sahihi, M.; Kazemi, Z.; Kajani, A. A.; Zali-Boeini, H.; Kordestani, N.; Bruno, G.; Gharaghani, S.: Chiral halogenated Schiff base compounds: green synthesis, anticancer activity and DNA-binding study. J. Mol. Struct. 1161 (2018) 497–511.10.1016/j.molstruc.2018.02.042Search in Google Scholar

8. Wu, Q.; Zi, Q.; Qiao, Y.: Copper(II) coordination complex constructed from halogenated tetradentate Schiff base ligand: synthesis, crystal structure, and Hirshfeld surface analysis. Crystallogr. Rep. 64 (2019) 905–909.10.1134/S1063774519060166Search in Google Scholar

9. Mandal, M.; Ramkumar, V.; Chakraborty, D.: Salen complexes of zirconium and hafnium: synthesis, structural characterization and polymerization studies. Polym. Chem. 10 (2019) 3444–3460.10.1039/C8PY01750FSearch in Google Scholar

10. Akitsu, T.; Takeuchi, Y.; Einaga, Y.: Diaqua[(1R,2R)-N,N′-bis(3,5-dibromosalicylidene) cyclohexane-1,2-diamine-κ4O,N,N′,O′] manganese(III) perchlorate dihydrate. Acta Crystallogr. E61 (2005) m772–m774.10.1107/S1600536805009062Search in Google Scholar

11. Wu, Q.; Tang, Y.; Li, J.; Li, Y.; Fang, Y.: Crystal structure of rac-trans-N,N-bis(3,5-diiodosalicylidene)-1,2-cyclohexanediamine, C20H18I4N2O2. Z. Kristallogr. NCS 234 (2019) 69.10.1515/ncrs-2018-0173Search in Google Scholar

Received: 2020-01-27
Accepted: 2020-02-26
Published Online: 2020-05-04
Published in Print: 2020-06-25

©2020 Fang Jiang et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2020-0051/html
Scroll to top button