Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) March 17, 2020

Crystallographic orientation of ilmenite inclusions in amphibole – an electron backscatter diffraction study

  • Chang Xu EMAIL logo , Shanrong Zhao EMAIL logo , Jiaohua Zhou , Xu He and Haijun Xu

Abstract

Orientated ilmenite inclusions have been discovered in amphibole of hornblendite from the Zhujiapu area, Dabie ultra-high-pressure (UHP) metamorphic terrane, China. In order to characterize the crystallographic orientation relationships between ilmenite inclusions and amphibole host and reconstruct the mechanism of their formation, we present an electron backscatter diffraction (EBSD) analysis combined with energy dispersive spectroscopy (EDS) analysis and electron microprobe analysis (EPMA) for ilmenite inclusions and amphibole host. The inclusions can be subdivided into four groups: (1) 60.2% of ilmenites have the crystallographic orientation {0001}Ilm // {100}Amp, (101̅0)Ilm // {010}Amp, [112̅0]Ilm // <001> Amp and [112̅0]Ilm // <012 > Amp. (2) 16.5% of ilmenites have <0001> Ilm // <001> Amp, (101̅0)Ilm // {010}Amp, (112̅0)Ilm // {100}Amp and [3̅031]Ilm // <012> Amp. (3) 13.8% of ilmenites have <0001> Ilm // <012> Amp, (112̅0)Ilm // {100}Amp and [3̅031]Ilm // <001> Amp. (4) 9.5% of ilmenites have <0001> Ilm // [1̅12]Amp, (101̅0)Ilm // {201}Amp, [112̅0]Ilm // [1̅12]Amp and [1121¯]Ilm// <010> Amp. By comparing the lattice relationship between ilmenite inclusions and amphibole hosts, it is shown that the frequency of the ilmenite inclusions in different groups is related to the lattice coherency and oxygen packing. Group-1 of the ilmenite inclusions was most likely be formed via a solid-state exsolution process by cooling of the hornblendite after the intrusion was emplaced. The other three groups of ilmenite inclusions were probably formed via reduction reaction in an open system. The formation temperature of the ilmenite inclusions is estimated by using the TiO2 solubility geothermeter in amphibole. The minimum formation temperature of the ilmenite inclusions is about 1025 °C, and the maximum formation temperature of the ilmenite inclusions is about 1126 °C.

Acknowledgements

We are gratefull to Ming Tao for the help with the EBSD analyses. This work was supported by grants from the National Natural Science Foundation of China (41802042, 41872037 and 41772222).

References

[1] L. Dobrzhinetskaya, H. W. Green, S. Wang, Alpe Arami: a peridotite massif from depths of more than 300 kilometers. Science1996, 271, 1841.10.1126/science.271.5257.1841Search in Google Scholar

[2] B. R. Hacker, T. Sharp, R. Y. Zhang, J. G. Liou, R. L. Hervig, Determining the origin of ultrahigh-pressure lherzolites. Science1997, 278, 702.10.1126/science.278.5338.702Search in Google Scholar

[3] S. Song, L. Zhang, Y. Niu, Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China. Am. Mineral. 2004, 89, 1330.10.2138/am-2004-8-922Search in Google Scholar

[4] S. L. Hwang, T. F. Yui, H. T. Chu, P. Shen, Y. Iizuka, H. Y. Yang, J. Yang, Z. Q. Xu, Hematite and magnetite precipitates in olivine from the Sulu peridotite: a result of dehydrogenation-oxidation reaction of mantle olivine? Am. Mineral.2008, 93, 1051.10.2138/am.2008.2784Search in Google Scholar

[5] Y. F. Zhang, C. Wang, Y. Wu, W. L. Liu, Z. M. Jin, Experimental constraints on formation of hematite in olivine at high pressures and temperatures. Phys. Chem. Miner. 2015, 42, 761.10.1007/s00269-015-0760-ySearch in Google Scholar

[6] H. L. M. V. Roermund, M. R. Drury, A. Barnhoorn, A. D. Ronde, Non-silicate inclusions in garnet from an ultra-deep orogenic peridotite. Geol. J.2000, 35, 209.10.1002/gj.858Search in Google Scholar

[7] J. J. Ague, J. O. Eckert, Precipitation of rutile and ilmenite needles in garnet: Implications for extreme metamorphic conditions in the Acadian Orogen, USA. Am. Mineral.2012, 97, 840.10.2138/am.2012.4015Search in Google Scholar

[8] S. L. Hwang, P. Shen, H. T. Chu, T. F. Yui, Y. Iizuka, Origin of rutile needles in star garnet and implications for interpretation of inclusion textures in ultrahigh-pressure metamorphic rocks. J. Metamorph. Geol.2015, 33, 249.10.1111/jmg.12119Search in Google Scholar

[9] S. L. Hwang, P. Shen, H. T. Chu, T. F. Yui, On the forbidden and the optimum crystallographic variant of rutile in garnet. J. Appl. Crystallogr.2016, 49, 1922.10.1107/S1600576716014151Search in Google Scholar

[10] T. A. Griffiths, G. Habler, R. Abart, Crystallographic orientation relationships in host–inclusion systems: new insights from large EBSD data sets. Am. Mineral. 2016, 101, 690.10.2138/am-2016-5442Search in Google Scholar

[11] H. J. Xu, Y. Wu, Oriented inclusions of pyroxene, amphibole and rutile in garnet from the Lüliangshan garnet peridotite massif, North Qaidam UHPM belt, NW China: an electron backscatter diffraction study. J. Metamorph. Geol. 2017, 35, 1.10.1111/jmg.12208Search in Google Scholar

[12] J. M. Feinberg, H. R. Wenk, P. R. Renne, G. R. Scott, Epitaxial relationships of clinopyroxene-hosted magnetite determined using electron backscatter diffraction (EBSD) technique. Am. Mineral. 2004, 89, 462.10.2138/am-2004-2-328Search in Google Scholar

[13] R. Y. Zhang, J. G. Liou, Clinopyroxenite from the Sulu ultrahigh-pressure terrane, eastern China: origin and evolution of garnet exsolution in clinopyroxene. Am. Mineral.2003, 88, 1591.10.2138/am-2003-1022Search in Google Scholar

[14] J. Chen, Z. Q. Xu, Pargasite and ilmenite exsolution texture in clinopyroxenes from Hujialing garnet-pyroxenite, Su-Lu UHP terrane, Central China: a geodynamic implication. Eur. J. Mineral. 2005, 17, 895.10.1127/0935-1221/2005/0017-0895Search in Google Scholar

[15] S. L. Hwang, T. F. Yui, H. T. Chu, P. Shen, R. Y. Zhang, J. G. Liou, An AEM study of garnet clinopyroxenite from the Sulu ultrahigh-pressure terrane: formation mechanisms of oriented ilmenite, spinel, magnetite, amphibole and garnet inclusions in clinopyroxene. Contrib. Mineral. Petrol.2011, 161, 901.10.1007/s00410-010-0571-6Search in Google Scholar

[16] T. A. Alifirova, L. N. Pokhilenko, A. V. Korsakov, Apatite, SiO2, rutile and orthopyroxene precipitates in minerals of eclogite xenoliths from Yakutian kimberlites. Lithos2015, 226, 31.10.1016/j.lithos.2015.01.020Search in Google Scholar

[17] R. Y. Zhang, J. G. Liou, Exsolution lamellae in minerals from ultrahigh-pressure rocks. Int. Geol. Rev.1999, 41, 981.10.1080/00206819909465184Search in Google Scholar

[18] L. Liu, J. X. Yang, J. F. Zhang, D. L. Chen, C. Wang, W. Q. Yang, Exsolution microstructures in ultrahigh-pressure rocks: progress, controversies and challenges. Chin. Sci. Bull.2009, 54, 1983.10.1007/s11434-009-0204-5Search in Google Scholar

[19] R. Y. Zhang, J. G. Liou, W. G. Ernst, The Dabie–Sulu continental collision zone: a comprehensive review. Gondwana Res. 2009, 16, 1.10.1016/j.gr.2009.03.008Search in Google Scholar

[20] A. E. Ringwood, J. F. Lovering, Significance of pyroxene-ilmenite intergrowths among kimberlite xenoliths. Earth Planet. Sci. Lett. 1970, 7, 371.10.1016/0012-821X(69)90052-1Search in Google Scholar

[21] J. R. Garrison, L. A. Taylor, Petrogenesis of pyroxene-oxide intergrowths from kimberlite and cumulate rocks: co-precipitation or exsolution? Am. Mineral.1981, 66, 723.Search in Google Scholar

[22] J. M. Feinberg, G. R. Scott, P. R. Renne, H. R. Wenk, Exsolved magnetite inclusions in silicates: features determining their remanence behaviour. Geology2005, 33, 513.10.1130/G21290.1Search in Google Scholar

[23] O. Ageeva, G. Habler, A. Pertsev, R. Abart, Fe-Ti oxide micro-inclusions in clinopyroxene of oceanic gabbro: phase content, orientation relations and petrogenetic implication. Lithos2017, 290–291, 104.10.1016/j.lithos.2017.08.007Search in Google Scholar

[24] Z. Liang, Y. Xiao, J. Thakurta, B. X. Su, C. Chen, Y. Bai, P. A. Sakyi, Exsolution lamellae in olivine grains of dunite units from different types of mafic-ultramafic complexes. Acta Geol. Sin.-Engl. Ed.2018, 92, 166.10.1111/1755-6724.13544Search in Google Scholar

[25] B. A. Wyatt, The melting and crystallisation behaviour of a natural clinopyroxene-ilmenite intergrowth. Contrib. Mineral. Petrol.1977, 61, 1.10.1007/BF00375941Search in Google Scholar

[26] P. R. Renne, G. R. Scott, J. M. G. Glen, J. M Feinberg, Oriented inclusions of magnetite in clinopyroxene: source of stable remanent magnetization in gabbros of the Messum Complex, Namibia. Geochem. Geophys. Geosyst.2002, 3, 1.10.1029/2002GC000319Search in Google Scholar

[27] P. Mongkoltip, J. R. Ashworth, Exsolution of ilmenite and rutile in hornblende. Am. Mineral. 1983, 68, 143.Search in Google Scholar

[28] M. D. Ruiz Cruz, E. Puga, D. D. F. Antonio, Exsolution microstructures in amphiboles from metabasalts of the Betic ophiolitic association (SE Spain). Eur. J. Mineral.2007, 19, 547.10.1127/0935-1221/2007/0019-1735Search in Google Scholar

[29] S. L. Hwang, P. Shen, H. T. Chu, T. F. Yui, Y. Iizuka, H. P. Schertl, Rutile inclusions in garnet from a dissolution-reprecipitation mechanism. J. Metamorph. Geol.2019, 37, 1079.10.1111/jmg.12502Search in Google Scholar

[30] D. J. Prior, A. P. Boyle, F. Brenker, M. C. Cheadle, A. Day, G. Lopez, L. Peruzzo, G. J. Potts, S. Reddy, R. Spiess, N. Timms, P. Trimby, J. Wheeler, L. Zetterström, The application of Electron Backscatter Diffraction and Orientation Contrast Imaging in the SEM to textural problems in rocks. Am. Mineral.1999, 84, 1741.10.2138/am-1999-11-1204Search in Google Scholar

[31] A. J. Schwartz, M. Kumar, B. L. Adams, D. P. Field, Electron Backscatter Diffraction in Material Science. Springer, New York, USA, 2nd edition, 2009.10.1007/978-0-387-88136-2Search in Google Scholar

[32] H. R. Wenk, K. Chen, R. Smith, Morphology and microstructure of magnetite and ilmenite inclusions in plagioclase from Adirondack anorthositic gneiss. Am. Mineral.2011, 96, 1316.10.2138/am.2011.3760Search in Google Scholar

[33] J. F. Zhang, H. J. Xu, Q. Liu, H. W. Green, L. F. Dobrzhinetsksya, Pyroxene exsolution topotaxy in majoritic garnet from 250 to 300 km depth. J. Metamorph. Geol.2011, 29, 741.10.1111/j.1525-1314.2011.00939.xSearch in Google Scholar

[34] H. J. Xu, J. F. Zhang, K. Q. Zong, L. Liu, Quartz exsolution topotaxy in clinopyroxene from the UHP eclogite of Weihai, China. Lithos2015, 226, 17.10.1016/j.lithos.2015.02.010Search in Google Scholar

[35] S. R. Zhao, G. G. Zhang, H. Sun, R. Mason, X. He, Orientation of exsolution lamellae in mantle xenolith pyroxenes and implications for calculating exsolution pressures. Am. Mineral.2017, 102, 2096.10.2138/am-2017-6009Search in Google Scholar

[36] L. Q. Dai, Z. F. Zhao, Y. F. Zheng, Q. L. Li, Y. H. Yang, M. N. Dai, Zircon Hf-O isotope evidence for crust-mantle interaction during continental deep subduction. Earth Planet. Sci. Lett.2011, 308, 229.10.1016/j.epsl.2011.06.001Search in Google Scholar

[37] L. Q. Dai, Z. F. Zhao, Y. F. Zheng, J. Zhang, The nature of orogenic lithospheric mantle: geochemical constraints from postcollisional mafic-ultramafic rocks in the Dabie orogen. Chem. Geol.2012, 334, 99.10.1016/j.chemgeo.2012.10.009Search in Google Scholar

[38] B. E. Leake, A. R. Woolley, W. D. Birch, E. A. J. Burke, G. Ferraris, J. D. Grice, F. C. Hawthorne, H. J. Kisch, V. G. Krivovichev, J. C. Schumacher, N. C. N. Stephenson, E. J. W. Whittaker, Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s 1997 recommendations. Can. Mineral. 2003, 41, 1355.10.2113/gscanmin.41.6.1355Search in Google Scholar

[39] M. W. Phillips, J. E. Draheim, R. K. Popp, C. A. Clowe, A. A. Pinkerton, Effects of oxidation-dehydrogenation in tschermakitic hornblende. Am. Mineral.1989, 74, 764.Search in Google Scholar

[40] B. A. Wechsler, C.T. Prewitt, Crystal Structure of ilmenite (FeTiO3) at high temperature and at high pressure. Am. Mineral.1984, 69, 176.Search in Google Scholar

[41] E. Dowty, SHAPE, Version 7.1, Shape software, 521 Hidden Valley Road, Kingsport, TN37663, USA, 2004.Search in Google Scholar

[42] M. G. Bown, P. Gay, The identification of oriented inclusions in pyroxene crystals. Am. Mineral.1959, 44, 592.Search in Google Scholar

[43] A. Rečnik, N. Stanković, N. Daneu, Topotaxial reactions during the genesis of oriented rutile/hematite intergrowths from Mwinilunga (Zambia). Contrib. Mineral. Petrol.2015, 169, 19.10.1007/s00410-015-1107-xSearch in Google Scholar

[44] S. L. Hwang, P. Shen, H. T. Chu, T. F. Yui, On the forbidden and the optimum crystallographic variant of rutile in garnet. J. Appl. Crystallogr.2016, 49, 1922.10.1107/S1600576716014151Search in Google Scholar

[45] G. Capitani, Complex exsolution microstructures in ilmenite-pyrophanite from the Garnet Codera dike pegmatite (Central Italian Alps): An electron microscopy investigation. Mineral. Mag.2017, 81, 1087.10.1180/minmag.2016.080.154Search in Google Scholar

[46] W. Bollmann, Crystal Defects and Crystalline Interfaces. Springer-Verlag, New York, USA, 1970.10.1007/978-3-642-49173-3Search in Google Scholar

[47] P. Robinson, M. Ross, G. L. Jr. Nord, J. R. Smyth, H. W. Jaffe, Exsolution lamellae in augite and pigeonite; fossil indicators of lattice parameters at high temperature and pressure. Am. Mineral.1977, 62, 857.Search in Google Scholar

[48] J. M. Howe, Interfaces in Materials: Atomic Structure, Thermodynamics and Kinetics of Solid-vapor, Solid-liquid and Solid-solid Interfaces. Wiley, New York, USA, 1997.Search in Google Scholar

[49] D. Moseley, Ilmenite exsolution in olivine. Am. Mineral.1981, 66, 976.Search in Google Scholar

[50] N. Tomioka, K. Fuzino, Natural (Mg,Fe)SiO3-Ilmenite and -Perovskite in the Tenham Meteorite. Science1997, 277, 1084.10.1126/science.277.5329.1084Search in Google Scholar

[51] P. Robinson, S. A. McEnroe, N. Miyajima, K. Fabian, N. Church, Remanent magnetization, magnetic coupling, and interface ionic configurations of intergrown rhombohedral and cubic Fe-Ti oxides: a short survey. Am. Mineral.2016, 101, 518.10.2138/am-2016-5519Search in Google Scholar

[52] R. W. L. Maitre, The significance of the gabbroic xenoliths from Gough Island, South Atlantic. Mineral. Mag.1965, 34, 303.10.1180/minmag.1965.034.268.26Search in Google Scholar

[53] J. P. Lorand, N. Gregoire, Petrogenesis of Fe–Ti oxides in amphibole-rich veins from the Lherz orogenic peridotite (Northeastern Pyrénées, France). Contrib. Mineral. Petrol.2010, 160, 99.10.1007/s00410-009-0468-4Search in Google Scholar

[54] D. Zhao, E. J. Essene, Y. Zhang, An oxygen barometer for rutile-ilmenite assemblages: oxidation state of metasomatic agents in the mantle. Earth Planet. Sci. Lett. 1999, 166, 127.10.1016/S0012-821X(98)00281-7Search in Google Scholar

[55] W. G. Ernst, J. Liu, Experimental phase-equilibrium study of Al- and Ti-contents of calcic amphibole in MORB – a semiquantitative thermobarometer. Am. Mineral.1998, 83, 952.10.2138/am-1998-9-1004Search in Google Scholar

[56] X. Xiong, H. Keppler, A. Audétat, G. Gudfinnsson, W. Sun, M. Song, W. Xiao, L. Yuan, Experimental constraints on rutile saturation during partial melting of metabasalt at the amphibolite to eclogite transition, with applications to TTG genesis. Am. Mineral.2009, 94, 1175.10.2138/am.2009.3158Search in Google Scholar

Received: 2020-01-18
Accepted: 2020-02-28
Published Online: 2020-03-17
Published in Print: 2020-05-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2020-0003/html
Scroll to top button