Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 23, 2020

Mathematical modelling of acute phase of myocardial infarction

  • Chermen A. Tsgoev , Olga F. Voropaeva EMAIL logo and Yuri I. Shokin

Abstract

A mathematical model of the dynamics of cardiomyocyte death in myocardial infarction during the acute phase of the disease is developed. An economical computing technology of structural and parametric identification of model equations is presented based on the use of experimental data as dynamic parameters and on the idea of splitting the inverse coefficient problem with a large number of unknown parameters into a sequence of simpler inverse problems. The relevance of the proposed mathematical model is confirmed by comparison of the numerical solution to the problem with experimental data and also with the results of modelling of known therapeutic strategies.

MSC 2010: 97M60; 65L09; 90C31; 93B30

References

[1] T. Anzai, Post-infarction inflammation and left ventricular remodeling. Circulation J. 77 (2013), No 3, 580–587.10.1253/circj.CJ-13-0013Search in Google Scholar

[2] T. Baron, K. Hambraeus, J. Sundström, D. Erlinge, T. Jernberg, B. Lindahl, and TOTAL-AMI study group, Type 2 myocardial infarction in clinical practice. Heart101 (2015), No 2, 101–106.10.1136/heartjnl-2014-306093Search in Google Scholar PubMed

[3] B. Chen and N. G. Frangogiannis, Immune cells in repair of the infarcted myocardium. Microcirculation24 (2017), No 1, e12305.10.1111/micc.12305Search in Google Scholar PubMed

[4] A. M. Chernukh, Inflammation (Essays on Pathology and Experimental Therapy). Medicine, Moscow, 1979 (in Russian).Search in Google Scholar

[5] S. G. Cherny, D. V. Chirkov, V. N. Lapin, V. A. Skorospelov, and S. V. Sharov, Numerical Modeling of Flows in Turbomachines. Nauka, Novosibirsk, 2006 (in Russian).Search in Google Scholar

[6] H. W. Engl, C. Flamm, P. Kügler, J. Lu, S. Müller, and P. Schuster, Inverse problems in systems biology. Inverse Problems25 (2009), 123014, 51p.10.1088/0266-5611/25/12/123014Search in Google Scholar

[7] P. Eykhoff, System Identification: Parameter and State Estimation. Wiley, London, 1974.Search in Google Scholar

[8] N. G. Frangogiannis, Pathophysiology of myocardial infarction. Compr Physiol. 5 (2015), No 4, 1841–75.10.1002/cphy.c150006Search in Google Scholar PubMed

[9] S. Frantz and M. Nahrendorf, Cardiac macrophages and their role in ischemic heart disease. Cardiovascular Research102 (2014), No 2, 240–248.10.1093/cvr/cvu025Search in Google Scholar PubMed PubMed Central

[10] C. Gao, Y. Liu, Q. Yu, Q. Yang, B. Li, L. Sun, W. Yan, X. Cai, E. Gao, L. Xiong, H. Wang, and L. Tao, TNF-α antagonism ameliorates myocardial ischemia-reperfusion injury in mice by upregulating adiponectin. Am. J. Physiol. Heart Circ. Physiol. 308 (2015), No. 12, H1583–H1591.10.1152/ajpheart.00346.2014Search in Google Scholar PubMed

[11] I. M. Gelfand and M. L. Tsetlin, On some methods of control for complex systems. Uspekhi Matem. Nauk17 (1962), No. 1(103), 3–25.10.1070/RM1962v017n01ABEH001124Search in Google Scholar

[12] A. Gombozhapova, Yu. Rogovskaya, V. Shurupov, M. Rebenkova, Ju. Kzhyshkowska, S. V. Popov, R. S. Karpov, and V. Ryabov, Macrophage activation and polarization in post-infarction cardiac remodeling. J. Biomed. Sci. 24 (2017), No. 13, 1–11.10.1186/s12929-017-0322-3Search in Google Scholar PubMed PubMed Central

[13] E. Yu. Gusev and V. A. Chereshnev, Systemic inflammation: theoretical and methodological approaches to the description of the model of the general pathological process. Part 1. General characteristics of the process. Pathological Physiology and Experimental Therapy (2012), No. 4, 3–14 (in Russian).Search in Google Scholar

[14] D. M. Hamby, A review of techniques for parameter sensitivity analysis of environmental models. Environmental Monitoring and Assessment32 (1994), No. 2, 135–154.10.1007/BF00547132Search in Google Scholar PubMed

[15] Y. F. Jin, H. C. Han, J. Berger, Q. Dai, and M. L. Lindsey, Combining experimental and mathematical modeling to reveal mechanisms of macrophage-dependent left ventricular remodeling. BMC Systems Biology5 (2011), No. 60, 14p.10.1186/1752-0509-5-60Search in Google Scholar PubMed PubMed Central

[16] S. I. Kabanikhin, A. I. Iľin, and O. I. Krivirot’ko, On parameter definition of the models describing by systems of nonlinear differential equations. Sib. Elektr. Matem. Izv. 11 (2014), 62–76.Search in Google Scholar

[17] S. V. Lyamina and I. Yu. Malyshev, Polarization of macrophages in the modern concept of forming an immune response. Fund. Research (2014), No 10, pt. 5, 930–935. (in Russian).Search in Google Scholar

[18] H. Mühlenbein and D. Schlierkamp-Voosen, Predictive models for the breeder genetic algorithm. Evolutionary Computation1 (1993), No. 1, 25–49.10.1162/evco.1993.1.1.25Search in Google Scholar

[19] L. M. Nepomnyashchikh, E. L. Lushnikova, and D. E. Semenov, Regenerative and Plastic Insufficiency of the Heart. Publ. House RAMS, Moscow, 2003 (in Russian).Search in Google Scholar

[20] E. S. Oran and J. P. Boris, Numerical Simulation of Reactive Flow. Elsevier, New York, 1987.Search in Google Scholar

[21] N. D. Plotnikov, Ch. A. Tsgoev, and O. F. Voropaeva, Mathematical modeling of cell death processes in a living organism. In: Proc. Int. Conf. ‘Marchuk Scientific Readings2017’, Novosibirsk, June 25July 14, 2017 (Eds. A. Konovalov, E. Tyrtyshnikov, Yu. Vasilevsky, S. Kabanikhin, G. Mikhailov, V. Shaidurov, Y. Laevskaya, V. Penenko, and M. Shishlenin). Inst. Comput. Math. Math. Geophys., Novosibirsk, 2017, pp. 697–704.Search in Google Scholar

[22] M. Sallaberger, M. Fisler, M. Michaud, K. Eisele, and K. Casey, The design of francis turbine runners by 3D Euler simulations coupled to a breeder genetic algorithm. In: Proc. 20th IAHR Symp. Hydraulic Machinery and Systems, Aug. 69, 2000. Charlotte, North Carolina, USA, 2000, 10p.Search in Google Scholar

[23] A. Saxena, W. Chen, Y. Su, V. Rai, O. U. Uche, N. Li, and N. G. Frangogiannis, IL-1 induces proinflammatory leukocyte infiltration and regulates fibroblast phenotype in the infarcted myocardium. J. Immunol. 191 (2013), 4838–4848.10.4049/jimmunol.1300725Search in Google Scholar PubMed PubMed Central

[24] A. Saxena, I. Russo, and N. G. Frangogiannis, Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges. Transl. Res. 167 (2016), No. 1, 152–166.10.1016/j.trsl.2015.07.002Search in Google Scholar PubMed PubMed Central

[25] K. Thygesen, J. S. Alpert, A. S. Jaffe, B. R. Chaitman, J. J. Bax, D. A. Morrow, and H. D. White, Fourth universal definition of myocardial infarction (2018). Circulation138 (2018), No. 20, e618–e651.Search in Google Scholar

[26] C. Troidl, H. Möllmann, H. Nef, F. Masseli, S. Voss, S. Szardien, M. Willmer, A. Rolf, J. Rixe, K. Troidl, S. Kostin, C. Hamm, and A. Elsässer, Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. J. Cell. Mol. Med. 13 (2009), No. 9B, 3485–3496.10.1111/j.1582-4934.2009.00707.xSearch in Google Scholar PubMed PubMed Central

[27] Ch. A. Tsgoev and O. F. Voropaeva, Mathematical modeling of cell death in myocardial infarction. In: Distributed information and computing resources. Science in a digital economy. (DICR-2017), Proc. XVI All-Russian Conf., Novosibirsk, Russia, December 47, 2017 (Eds. O. L. Zhizhimov and A. M. Fedotov). Novosibirsk, ICT SB RAS, 2017, pp. 273–278. http://elib.ict.nsc.ru/jspui/handle/ICT/1467 (in Russian).Search in Google Scholar

[28] O. F. Voropaeva, N. D. Plotnikov, and Ch. A. Tsgoev, Numerical simulation of cell death during ischemia. In: Proc. Int. Conf. ‘Applied Mathematics, Computational Science and Mechanics: Current Problems.’ Voronezh, September 12–5, 2016. Nauchno-Issledov. Publ., Voronezh, 2016, pp. 221–223.Search in Google Scholar

[29] O. F. Voropaeva and Ch. A. Tsgoev, A numerical model of inflammation dynamics in the core of myocardial infarction. J. Appl. Industr. Math. 13 (2019), No. 2, 372–383.10.1134/S1990478919020182Search in Google Scholar

[30] Y. Wang, Y. Jin, Y. Ma, G. Halade, and M. Linsey, Mathematical modeling of macrophage activation in left ventricular remodeling post-myocardial infarction. In: 2011 IEEE Int. Workshop on Genomic Signal Processing and Statistics. December 46, 2011, San Antonio, Texas, USA. 2011, pp. 202–205.10.1109/GENSiPS.2011.6169480Search in Google Scholar

[31] Y. Wang, T. Yang, Y. Ma, G. V. Halade, J. Zhang, M. L. Lindsey, and Y. F. Jin, Mathematical modeling and stability analysis of macrophage activation in left ventricular remodeling post-myocardial infarction. BMC Genomics13 (2012), No. 21, 8p.10.1186/1471-2164-13-S6-S21Search in Google Scholar PubMed PubMed Central

[32] F. Yang, Y. Liu, X. Yang, J. Xu, A. Kapke, and O. A. Carretero, Myocardial infarction and cardiac remodelling in mice. Experimental Physiology87 (2002), No. 5, 547–555.10.1113/eph8702385Search in Google Scholar PubMed

[33] A. A. Yarilin, Immunology. Tutorial. GEOTAR-Media, Moscow, 2010 (in Russian).Search in Google Scholar

[34] P. Zymek, D.-Y. Nah, M. Bujak, G. Ren, A. Koerting, T. Leucker, P. Huebener, G. Taffet, M. Entman, and N. G. Frangogiannis, Interleukin-10 is not a critical regulator of infarct healing and left ventricular remodeling. Cardiovasc. Res. 74 (2007), No. 2, 313–322.10.1016/j.cardiores.2006.11.028Search in Google Scholar PubMed PubMed Central

Received: 2019-07-04
Accepted: 2020-01-16
Published Online: 2020-04-23
Published in Print: 2020-04-28

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/rnam-2020-0009/html
Scroll to top button