Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 23, 2020

Numerical steady state analysis of the Marchuk–Petrov model of antiviral immune response

  • Ekaterina V. Sklyarova EMAIL logo , Yuri M. Nechepurenko and Gennady A. Bocharov

Abstract

The problem of guaranteed computation of all steady states of the Marchuk–Petrov model with fixed values of parameters and analysis of their stability are considered. It is shown that the system of ten nonlinear equations, nonnegative solutions of which are steady states, can be reduced to a system of two equations. The region of possible nonnegative solutions is analytically localized. An effective technology for computing all nonnegative solutions and analyzing their stability is proposed. The obtained results provide a computational basis for the study of chronic forms of viral infections using the Marchuk–Petrov model.

MSC 2010: 92B05; 92C42; 92-08; 93A38

Acknowledgment

The authors are grateful to Dmitry S. Grebennikov and Michael Yu. Khristichenko for their help and fruitful discussions.

  1. Funding: The work was supported by the Russian Science Foundation (project No. 17–71–20149) (the development and implementation of numerical methods) and the Russian Science Foundation (project No. 18–11–00171) (the numerical analysis of the Marchuk–Petrov model).

References

[1] H. T. Banks, R. Baraldi, K. Cross, K. Flores, C. McChesney, L. Poag, and E. Thorpe, Uncertainty quantification in modelling HIV viral mechanics. Math. Biosci. Eng. 12 (2015), No. 5, 937–964.10.3934/mbe.2015.12.937Search in Google Scholar

[2] H. T. Banks, K. B. Flores, S. Hu, E. Rosenberg, M. Buzon, X. Yu, and M. Lichterfeld, Immuno-modulatory strategies for reduction of HIV reservoir cells. J. Theor. Biol. 372 (2015), 146–158.10.1016/j.jtbi.2015.02.006Search in Google Scholar

[3] H. T. Banks, S. Hu, K. Link, E. S. Rosenberg, S. Mitsuma, and L. Rosario, Modelling immune response to BK virus infection and donor kidney in renal transplant recipients. Inv. Problems Sci. Engrg. 24 (2016), No. 1, 127–152.10.1080/17415977.2015.1017484Search in Google Scholar

[4] A. Bertoletti, A. T. Tan, and S. Koh, T-cell therapy for chronic viral hepatitis. Cytotherapy19 (2017), No. 11, 1317–1324.10.1016/j.jcyt.2017.07.011Search in Google Scholar

[5] G. A. Bocharov and G. I. Marchuk, Applied problems of mathematical modelling in immunology. Comp. Math. Math. Phys. 40 (2000), No. 12, 1905–1920.Search in Google Scholar

[6] G. Bocharov, V. Volpert, B. Ludewig, and A. Meyerhans, Mathematical immunology of Virus Infections. Springer, 2018.10.1007/978-3-319-72317-4Search in Google Scholar

[7] A. V. Boiko and Yu. M. Nechepurenko, Technique for the numerical analysis of the riblet effect on temporal stability of plane flows. Comp. Math. Math. Phys. 50 (2010), No. 6, 1055–1070.10.1134/S0965542510060114Search in Google Scholar

[8] L. Canini and A. S. Perelson, Viral kinetic modelling: state of the art. J. Pharmacokinetics and Pharmacodynamics41 (2014), No. 5, 431–443.10.1007/s10928-014-9363-3Search in Google Scholar

[9] V. A. Chereshnev, G. A. Bocharov, A. V. Kim, S. I. Bazhan, I. A. Gainova, A. N. Krasovskii, N. G. Shmagel, A. V. Inanov, I. A. Safronov, and R. M. Tretyakova, Introduction to Modelling and Control of HIV Infection Dynamics. Institute of Computer Research, 2016 (in Russian).Search in Google Scholar

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms. MIT Press, 2009.Search in Google Scholar

[11] G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical Computations. Prentice-Hall, 1977.Search in Google Scholar

[12] F. Graw and A. S. Perelson, Modeling viral spread. Annual Review of Virology3 (2016), No. 1, 555–572.10.1146/annurev-virology-110615-042249Search in Google Scholar

[13] H. Hilton, Plane Algebraic Curves. Oxford University Press, 1920.Search in Google Scholar

[14] D. Kahaner, C. Moler, and S. Nash, Numerical Methods and Software. Prentice-Hall, 1977.Search in Google Scholar

[15] Y. F. Liaw and C. M. Chu, Hepatitis B virus infection. The Lancet373 (2009), No. 9663, 582–592.10.1016/S0140-6736(09)60207-5Search in Google Scholar

[16] V. A. Likhoshvai, T. M. Khlebodarova, S. I. Bazhan, I. A. Gainova, V. A. Chereshnev, and G. A. Bocharov, Mathematical model of the Tat-Rev regulation of HIV-1 replication in an activated cell predicts the existence of oscillatory dynamics in the synthesis of viral components. BMC Genomics15 (2014), No. 12, S1.10.1186/1471-2164-15-S12-S1Search in Google Scholar PubMed PubMed Central

[17] G. I. Marchuk, Mathematical Modeling in Immunology and Medicine. Selected Works. Vol. 4. Russ. Acad. Sci., Inst. Numer. Math., 2018 (in Russian).Search in Google Scholar

[18] G. I. Marchuk, A. A. Romanyukha, and G. A. Bocharov, Mathematical model of antiviral immune response. II. Parameters identification for acute viral hepatitis B. J. Theor. Biol. 151 (1991), No. 1, 41–69.10.1016/S0022-5193(05)80143-2Search in Google Scholar

[19] Yu. M. Nechepurenko, M. Yu. Khristichenko, D. S. Grebennikov, and G. A. Bocharov, Bistability analysis of virus infection models with time delays. Discrete Contin. Dyn. Syst. Ser. S (2019).10.20948/prepr-2019-17Search in Google Scholar

[20] M. A. Nowak and R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford University Press, 2000.Search in Google Scholar

[21] B. Rehermann, Pathogenesis of chronic viral hepatitis: differential roles of T cells and NK cells. Nature Medicine19 (2013), No. 7, 859.10.1038/nm.3251Search in Google Scholar PubMed PubMed Central

[22] R. A. Sergeev, R. E. Batorsky, J. M. Coffin, and I. M. Rouzine, Interpreting the effect of vaccination on steady state infection in animals challenged with Simian immunodeficiency virus. J. Theor. Biol. 263 (2010), No. 3, 385–392.10.1016/j.jtbi.2009.12.018Search in Google Scholar PubMed PubMed Central

[23] V. V. Zheltkova, D. A. Zheltkov, G. A. Bocharov, and E. E. Tyrtyshnikov, Modeling of HIV infection: model identification and global sensitivity analysis. Mathematical Biology and Bioinformatics14 (2019), No. 1, 19–33.10.17537/2019.14.19Search in Google Scholar

[24] V. V. Zheltkova, D. A. Zheltkov, Z. Grossman, G. A. Bocharov, and E. E. Tyrtyshnikov, Tensor based approach to the numerical treatment of the parameter estimation problems in mathematical immunology. J. Inverse and Ill-Posed Problems26 (2018), No. 1, 51–66.10.1515/jiip-2016-0083Search in Google Scholar

Received: 2019-05-25
Accepted: 2020-01-16
Published Online: 2020-04-23
Published in Print: 2020-04-28

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/rnam-2020-0008/html
Scroll to top button