Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access May 4, 2020

Cenospheres and their application advantages in biomedical engineering - a systematic review

  • Damian S. Nakonieczny , Magdalena Antonowicz and Zbigniew K. Paszenda

Abstract

Aluminum-silicate cenospheres are the most valuable residue present in fly ashes after combusting stone coal. Cenospheres are hollow bodies with desirable engineering properties, such as hardness, low bulk density and complete chemical inertness, thanks to which they can be used in biomedical engineering. The following review presents data on obtaining and processing the material, as well as potential biomedical applications.

References

[1] Ranjabar, N. and C. Kuenzel. Cenospheres: A Review. Fuel, Vol. 207, 2017, pp. 1–12.10.1016/j.fuel.2017.06.059Search in Google Scholar

[2] Bunn, D. W., J. Redondo-Martin, J. I. Munoz-Hernandez, and P. Diaz-Cachinero. Analysis of coal conversion to biomass as a transitional technology. Renewable Energy, Vol. 132, 2017, pp. 752–760.10.1016/j.renene.2018.08.045Search in Google Scholar

[3] He, L., L. Zhang, Z. Zhong, D. Wang, and F. Weng. Green credit, renewable energy investment and green economy development: Empirical analysis based on 150 listed companies of China. Journal of Cleaner Production, Vol. 208, 2019, pp. 363–372.10.1016/j.jclepro.2018.10.119Search in Google Scholar

[4] K. Vershinina, D. Shabardin, P. Strizhak, Burnout rates of fuel slurries containing petrochemicals, coals and coal processing waste Powder Technology, Available online 2018 In Press, Accepted Manuscript.10.1016/j.powtec.2018.11.052Search in Google Scholar

[5] Friedrich, K. Polymer composites for tribological applications. Advanced Industrial and Engineering Polymer Research, Vol. 1, No. 1, 2018, pp. 3–39.10.1016/j.aiepr.2018.05.001Search in Google Scholar

[6] Taha, Y., M. Benzaazoua, R. Hakkou, and M. Mansori. Coal mine wastes recycling for coal recovery and eco-friendly bricks production. Minerals Engineering, Vol. 107, 2017, pp. 123–138.10.1016/j.mineng.2016.09.001Search in Google Scholar

[7] Song, H., J. Liu, F. Xue, H. Cheng. The application of ultra-fine fly ash in the seal coating for the wall of underground coal mine, Advanced Powder Technology, Vol. 27, No 4, 2016, pp. 1645–1650.10.1016/j.apt.2016.05.028Search in Google Scholar

[8] Park, J. H., M. Edraki, D. Mulligan, and H. S. Jang. Review The application of coal combustion by-products in mine site rehabilitation. Journal of Cleaner Production, Vol. 84, 2014, pp. 761–772.10.1016/j.jclepro.2014.01.049Search in Google Scholar

[9] Fomenko, E. V., N. N. Anshits, L. A. Solovyov, O. A. Mikhaylova, and A. G. Anshits. Composition and morphology of fly ash ceno-spheres produced from the combustion of kuznetsk coal. Energy & Fuels, Vol. 27, No. 9, 2013, pp. 5440–5448.10.1021/ef400754cSearch in Google Scholar

[10] Hanif, A., Z. Lu, and Z. Li. Utilization of fly cenosphere as lightwieght filler in cemenet-based composites-A review. Construction & Building Materials, Vol. 144, 2017, pp. 373–384.10.1016/j.conbuildmat.2017.03.188Search in Google Scholar

[11] Sokol, E. V., N. V. Maksimova, N. I. Volkovs, E. N. Nigmatulina, and A. E. Frenkel. Hollow silicate microspheres from fly ashes of the Chelyabinsk brown coals (South Urals, Russia). Fuel Processing Technology, Vol. 67, No. 1, 2000, pp. 35–52.10.1016/S0378-3820(00)00084-9Search in Google Scholar

[12] Manakari, V., G. Parande, M. Doddamani, V. N. Gaitonde, I. G. Siddhalingeshwar, Kishore, V. C. Shunmugasamy, and N. Gupta. Dry Sliding wear of epoxy/cenosphere syntactic foams. Tribology International, Vol. 92, 2015, pp. 425–438.10.1016/j.triboint.2015.07.026Search in Google Scholar

[13] Rutkowska, G., P. Wichowski, J. Fronczyk, M. Franus, and M. Chalecki. Use of fly ashes from municipal sewage sludge combustion in production of ash concretes, Construction and Building Materials. Construction & Building Materials, Vol. 188, 2018, pp. 874–883.10.1016/j.conbuildmat.2018.08.167Search in Google Scholar

[14] Mochizuki, Y., Y. Ono, K. Uebo, and N. Tsubouchi. The fate of sulfur in coal during carbonziation and its effect on coal fluidity. International Journal of Coal Geology, Vol. 120, 2013, pp. 50–56.10.1016/j.coal.2013.09.007Search in Google Scholar

[15] Manakari, V., G. Parande, M. Doddamani, V. N. Gaitonde, I. G. Siddhalingeshwar, Kishore, V. C. Shunmugasamy, and N. Gupta. Dry sliding wear of epoxy/cenosphere syntactic foams. Tribology International, Vol. 92, 2015, pp. 425–438.10.1016/j.triboint.2015.07.026Search in Google Scholar

[16] Valentim, B., N. Shreya, B. Paul, C. S. Gomes, H. Sant’Ovaia, A. Guedes, J. Ribeiro, D. Flores, S. Pinho, I. Suárez-Ruiz, and C. R. Ward. Characteristics in fly ashes derived from Bokaro and Jharia (Jharkand, India) coals. International Journal of Coal Geology, Vol. 153, 2016, pp. 52–74.10.1016/j.coal.2015.11.013Search in Google Scholar

[17] Liu, F., J. Wang, X. Qjan, et al.. Integrating phase change materials into concreto through microencapsualtion using cenospheres. Cement and Concrete Research, Vol. 80, 2017, pp. 317–325.10.1016/j.cemconcomp.2017.04.001Search in Google Scholar

[18] Shahapurkar, K., C. D. Garcia, M. Doddamani, G. C. Mohan Kumar, and P. Prabhakar. Compressive behaviour of cenosphere/epoxy syntactic foams in arctic conditions. Composites. Part B, Engineering, Vol. 135, 2018, pp. 253–262.10.1016/j.compositesb.2017.10.006Search in Google Scholar

[19] Birla, S., D. P. Mondal, S. Das, D. K. Kashyap, and V. A. N. Ch. Effect of cenosphere contetnt on the compressive deformation behaviour of aluminium-censophere hybrid foam. Materials Science and Engineering A, Vol. 685, 2017, pp. 213–236.10.1016/j.msea.2016.12.131Search in Google Scholar

[20] Vassilew, S. V., and C. G. Vassileva. Mineralogy of comustion wastes from coal-fired power stations. Fuel Processing Technology, Vol. 47, No. 3, 1996, pp. 261–280.10.1016/0378-3820(96)01016-8Search in Google Scholar

[21] Kumar, B. R., M. Doddamani, S. E. Zeltmann, N. Gupta, and S. Ramakrishna. Data characterizing tensile behavior of ceno-sphere/HDPE syntactic foam. Data in Brief, Vol. 6, Feb. 4, 2016, pp. 933–941.10.1016/j.dib.2016.01.058Search in Google Scholar

[22] Balaji, R., M. Sasikumar, and A. Elayaperumal. Thermal. Thermo oxidative and ablative behawior of cenosphere filled ceramic/phenolic comnposites. Polymer Degradation & Stability, Vol. 114, 2015, pp. 125–132.10.1016/j.polymdegradstab.2015.02.008Search in Google Scholar

[23] Bajukov, O. A., N. N. Anashits, M. I. Petrov, et al. Composition of ferrospinel phase and magantic properties of microspheres and cenospheres from fly ashes. Materials Chemistry and Physics, Vol. 114, No. 1, 2009, pp. 495–503.10.1016/j.matchemphys.2008.09.061Search in Google Scholar

[24] Ngu, L. U., H. Wu, and D. K. Zhang. Characterization of ash ceno-spheres in fly ash from Australian power stations. Energy & Fuels, Vol. 21, No. 6, 2007, pp. 3437–3445.10.1021/ef700340kSearch in Google Scholar

[25] Balnco, F., P. Garcia, and J. Avala. Chracteristics and properties of lightweight concreto manufactured with cenospheres. Cement and Concrete Research, Vol. 30, No. 11, 2000, pp. 1715–1722.10.1016/S0008-8846(00)00357-4Search in Google Scholar

[26] Rohatgi, P. K., J. K. Kim, N. Gupta, S. Alaraj, and A. Daoud. Compressivie characteristcs of a 365/fly ash cenosphere composites cynthesized by pressure infiltration technique. Composites. Part A, Applied Science and Manufacturing, Vol. 37, No. 3, 2006, pp. 430–437.10.1016/j.compositesa.2005.05.047Search in Google Scholar

[27] Bartonova, L. Unburned carbon from coal combustion ash: An overview. Fuel Processing Technology, Vol. 134, 2015, pp. 136–158.10.1016/j.fuproc.2015.01.028Search in Google Scholar

[28] Li, X., J. Li, G.-G. Wu, Z.-Q. Bai, and W. Li. Clean and eflcient utilization of sodium-rich Zhundong coals in China: Behaviors of sodium species during thermal conversion processes. Fuel, Vol. 218, 2018, pp. 162–173.10.1016/j.fuel.2018.01.027Search in Google Scholar

[29] Karlsson, M. C. F., Z. Abbas, R. Bordes, Y. Cao, A. Larsson, A. Rol-land, P. Taylor, and B.-M. Steenari. Surface properties of recycled titanium oxide recovered from paint waste. Progress in Organic Coatings, Vol. 125, 2018, pp. 279–286.10.1016/j.porgcoat.2018.09.012Search in Google Scholar

[30] Johanson, O., and S. Gururaj, Shiuli Pujari-Palmer, M. Karlsson Ott, M. Strømme, H. Engqvist, and K. Welch. Titanium surface modification to enhance antibacterial and bioactive properties while retaining biocompatibility. Materials Science and Engineering C, Vol. 96, 2018, pp. 272–279.10.1016/j.msec.2018.11.021Search in Google Scholar PubMed

[31] Sarkar, A., R. Rano, K. K. Mishra, and A. Mazumder. Characterization of cenospheres collected from ash-pond of a super thermal power plant. Energy Sources Part A, Vol. 30, No. 3, 2007, pp. 271–283.10.1080/00908310600713883Search in Google Scholar

[32] Anshits, A. G., O. A. Bayukov, E. V. Kondratenko, N. N. Anshits, O. N. Pletnev, E. V. Rabchevskii, et al. Catalytic properties and nature of active centers of ferrospheres in oxidative coupling of methane. Applied Catalysis A: General, Vol. 524, 2016, 192–199.10.1016/j.apcata.2016.06.032Search in Google Scholar

[33] E. V. Sokol, M. Kalugin, E. N. Nigmatulina, N. I. Volkova, A. E. Frenkel, and N.V. Maksimova. Ferrospheres from fly ashes of Chelyabinsk coals: Chemical composition, morphology and formation conditions. Fuel, Vol. 81, No. 7, 2002, pp. 867–876.10.1016/S0016-2361(02)00005-4Search in Google Scholar

[34] Raask, E. Mineral Inpurities in coal conbustion. Behavior, Problems and Remedical Measures. Hemisphere Publishing Corporation. Springer-Verlag, 1985.Search in Google Scholar

[35] Li, Z., C. R. Ward, and L. W. Gurba. Occuarce of non-mineral inorganic elements in macerals of low-rank coals. International Journal of Coal Geology, Vol. 81, No. 4, 2010, pp. 242–250.10.1016/j.coal.2009.02.004Search in Google Scholar

[36] Chou, C. L. Sulfur in Coals: A review of geochemistry and origins. International Journal of Coal Geology, Vol. 100, 2012, pp. 1–13.10.1016/j.coal.2012.05.009Search in Google Scholar

[37] Permana, A., C. R. Ward, Z. Li, and L. W. Gurba. Distribution and origin of minerals in high-rank coals of the South Walker Creek area, Bowen Basin, Australia. International Journal of Coal Geology, Vol. 116, 2013, pp. 185–207.10.1016/j.coal.2013.03.001Search in Google Scholar

[38] Shahong, Z., Z. Man, L. Zirong, Z. Yang, Y. Hairui, S. Junmin, et al., Influence of combustion temperature and coal types on alumina crystal phase formation of high-alumina coal ash. Proceedings of the Combustion Institute, Vol. 37, No. 3, 2019, pp. 2919–2926.10.1016/j.proci.2018.06.123Search in Google Scholar

[39] Kumar, B. R., M. Doddamani, S. E. Zeltmann, N. Gupta, and S. Ramakrishna. Data characterizing tensile behavior of ceno-sphere/HDPE syntactic foam. Data in Brief, Vol. 6, Feb. 4, 2016, pp. 933–941.10.1016/j.dib.2016.01.058Search in Google Scholar PubMed PubMed Central

[40] Nakonieczny, D. S., Z. K. Paszenda, M. Basiaga, T. Radko, S. Drewniak, J. Podwórny, and W. Bogacz. Phase composition and morphology characteristics of ceria-stabilized zirconia powders obtained via sol-gel method with various pH conditions. Acta of Bioengineering and Biomechanics, Vol. 19, No. 2, 2017, pp. 21–30.Search in Google Scholar

[41] Nakonieczny, D., W. Walke, J. Majewska, and Z. Paszenda. Characterization of magnesia-doped yttria-stabilized zirconia powders for dental technology applications. Acta of Bioengineering and Biomechanics, Vol. 16, No. 4, 2014, pp. 99–106.Search in Google Scholar

[42] Nakonieczny, D., Z. Paszenda, S. Drewniak, T. Radko, and M. Lis. sZrO2-CeO2 ceramic powders obtained from a sol-gel process using acetylacetone as a chelating agent for potential application in prosthetic dentistry. Acta of Bioengineering and Biomechanics, Vol. 18, No. 3, 2016, pp. 53–60.Search in Google Scholar

[43] Chevalier, J., and L. Gremillard. Zirconia as a biomaterial. Comprehensive Biomaterials II, Vol. 1, 2017, pp. 122–144.10.1016/B978-0-12-803581-8.10245-0Search in Google Scholar

[44] Chevalier, J., and L. Gremillard, Zirconia Ceramics, In: T. Kokubo, Ed., Bioceramics and their Clinical Applications. Woodhead Publishing, England, 2008, pp. 243–265.10.1533/9781845694227.2.243Search in Google Scholar

[45] Nakonieczny, D. S., M. Antonowicz, Z. K. Paszenda, T. Radko, S. Drewaniak, W. Bogacz, and C. Krawczyk. Experimental investigation of particle size distribution and morphology of aluminayttria-ceria-zirconia powders obtained via sol-gel route. Biocybernetics and Biomedical Engineering, Vol. 38, No. 3, 2018, pp. 535–543.10.1016/j.bbe.2018.02.010Search in Google Scholar

[46] Wu, S., B. Tu, J. Lin, Z. Wang, X. Wang, M. Shen, and R. Hu. Evaluation of the biocompatibility of a hydroxyapatite-CaTiO3 coating in vivo. Biocybernetics and Biomedical Engineering. Vol. 35, 2015, No. 4, pp. 296–303.10.1016/j.bbe.2015.05.001Search in Google Scholar

[47] Huang, Q., X. Li, T. A. Elkhooly, S. Xu, X. Liu, Q. Feng, H. Wu, and Y. Liu. The osteogenic, inflammatory and osteo-immunomodulatory performances of biomedical Ti-Ta metal-metal composite with Caand Si-containing bioceramic coatings. Colloids and Surfaces. B, Biointerfaces, Vol. 169, Sep. 1, 2018, pp. 49–59.10.1016/j.colsurfb.2018.05.010Search in Google Scholar PubMed

[48] Ahlehlm, M., and P. Günther, et al. Innovative and novel manufacturing methods of ceramics and metal-ceramic composites for biomedical applications. Journal of the European Ceramic Society, Vol. 36, No. 12, 2016, pp. 2883–2888.10.1016/j.jeurceramsoc.2015.12.020Search in Google Scholar

[49] Smirnov, A., and P. Pertyagin. Wire electrical discharge machining of 3Y-TZP/Ta ceramic-metal composites. Journal of Alloys and Compounds, Vol. 739, 2018, pp. 62–68.10.1016/j.jallcom.2017.12.221Search in Google Scholar

[50] Dziadek, M., E. Stodolak-Zych, and K. Cholewa-Kowalska. Biodegradable ceramic-polymer composites for biomedical applications: A review. Materials Science and Engineering C, Vol. 71, Feb. 1, 2017, pp. 1175–1191.10.1016/j.msec.2016.10.014Search in Google Scholar PubMed

[51] Zhou, Z., E. Cunningham, A. Lennon, H. O. McCarthy, F. Buchanan, and N. Dunne. Development of three-dimensional printing polymer-ceramic scaffolds with enhanced compressive properties and tuneable resorption. Materials Science and Engineering C, Vol. 93, Dec. 1, 2018, pp. 975–986.10.1016/j.msec.2018.08.048Search in Google Scholar PubMed

[52] Steiner, B. M., D. J. McClements, and G. Davidov-Pardo. Encapsulation systems for lutein: A review. Trends in Food Science & Technology, Vol. 82, 2018, pp. 71–81.10.1016/j.tifs.2018.10.003Search in Google Scholar

[53] Ning, C., Z. Zhou, G. Tan, Y. Zhu, and C. Mao. Electroactive polymers for tissue regeneration: Developments and perspectives. Progress in Polymer Science, Vol. 81, Jun. 2018, pp. 144–162.10.1016/j.progpolymsci.2018.01.001Search in Google Scholar PubMed PubMed Central

[54] Azarpira, M. R., G. H. Shahcheraghi, M. Ayatollahi, B. Geramizadeh. Tissue engineering strategy using mesenchymal stem cell-based chitosan scaffolds in growth plate surgery: A preliminary study in rabbits. Vol. 101, No. 5, 2015, pp. 601–605.10.1016/j.otsr.2015.04.010Search in Google Scholar PubMed

[55] Soucacos, P. N., Z. Dailiana, A. E. Beris, and E. O. Johnson. Vascularised bone grafts for the managment of non-union. Injury, Vol. 31, No. 1, 2006, pp. 41–S50.10.1016/j.injury.2006.02.040Search in Google Scholar

[56] Gohil, S. V., S. Sauhil, J. Rose, et al. Polymers and Composites for orthopedic applications. Materials for Bone Disorders, 2017, Chapter 8, pp. 349–403.10.1016/B978-0-12-802792-9.00008-2Search in Google Scholar

[57] Tai, B. L., Y.-T. Kao, N. Payne, Y. Zheng, L. Chen, and A. J. Shih. 3D Printed composite for simulating thermal and mechanical responses of the cortical bone in orthopaedic surgery. Medical Engineering & Physics, Vol. 61, Nov. 2018, pp. 61–68.10.1016/j.medengphy.2018.08.004Search in Google Scholar

[58] M. Saad, S. Akhtar, S. Srivastava. Composite Polymer in Orthopedic Implants: A Review. Composite polymer in orthopedic Implants: A review. Materials Today: Proceedings, Vol. 5, No. 9, 2018, 20224–20231.Search in Google Scholar

[59] Q. Chen, G. A. Thous, Metallic implant biomaterials, Materials Science and Engineering: R, 87, 2015, 1-57.10.1016/j.mser.2014.10.001Search in Google Scholar

[60] Rony, L., R. Lancigu, and L. Hubert. Intraosseous metal implants in orthopedics: A review. Morphologie, Vol. 102, No. 339, Dec. 2018, pp. 231–242.10.1016/j.morpho.2018.09.003Search in Google Scholar

[61] Srivastava, S. K., and B. G. Ghosh. 5-Metallic biomaterials for dental implant systems, Fundamental Biomaterials. Metals, 2018, pp. 111–137.10.1016/B978-0-08-102205-4.00005-2Search in Google Scholar

[62] Su, Y., C. Luo, Z. Zhang, H. Hermawan, D. Zhu, J. Huang, et al., Bioinspired surface functionalization of metallic biomaterials. The Journal of the Mechanical Behavior of Biomedical Materials, Vol. 77, 2018, pp. 90–105.10.1016/j.jmbbm.2017.08.035Search in Google Scholar

[63] Ibrahim, M. Z., A. A. D. Sarahan, F. Yusuf, and M. Hamdi. Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants – A review article. Journal of Alloys and Compounds, Vol. 714, 2017, pp. 636–667.10.1016/j.jallcom.2017.04.231Search in Google Scholar

[64] Braszczyńska-Malik, K. N., and J. Kamieniak. Analysis of interface between components in AZ91 magnesium alloy foam composite with NI-P coated fly ash cenospheres. Journal of Alloys and Compounds, Vol. 720, 2017, pp. 352–359.10.1016/j.jallcom.2017.05.285Search in Google Scholar

[65] Jha, N., D. P. Mondal, M. D. Goel, J. D. Majumdar, S. Das, and O. P. Modi. Titanium cenosphere syntactic foam with coarser cenosphere fabicated by powder metallurgy at lower compaction load. Transactions of Nonferrous Metals Society of China, Vol. 24, No. 1, 2014, pp. 89–99.10.1016/S1003-6326(14)63032-6Search in Google Scholar

[66] Vogiatzis, C. A., A. Tsouknidas, D. T. Kountouras, and S. Skolianos. Aluminium-ceramic cenospheres synatic foams produced by powder metallurgy route. Materials & Design, Vol. 85, 2015, pp. 444–454.10.1016/j.matdes.2015.06.154Search in Google Scholar

[67] Goel, M. D., D. P. Mondal, M. S. Yadav, and S. K. Gupta. Effect of strain and relative density on compressive deformation bahavior of aluminium cenosphere syntactic foam. Materials Science and Engineering A, Vol. 590, 2014, pp. 406–415.10.1016/j.msea.2013.10.048Search in Google Scholar

[68] Prieto, E. M., J. M. Page, A. J. Harmata, and S. A. Guelcher. Injectable foams for regenerative medicine. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, Vol. 6, No. 2, Mar.-Apr. 2014, pp. 136–154.10.1002/wnan.1248Search in Google Scholar PubMed PubMed Central

[69] Xu, H. H., P. Wang, L. Wang, C. Bao, Q. Chen, M. D. Weir, L. C. Chow, L. Zhao, X. Zhou, and M. A. Reynolds. Calcium phosphate cements for bone engineering and their biological properties. Bone Research, Vol. 5, No. 1, Dec. 20, 2017, p. 17056.10.1038/boneres.2017.56Search in Google Scholar PubMed PubMed Central

[70] Shah, S. A. A., M. Imran, Q. Lian, F. K. Shehzad, N. Athir, J. Zhang, and J. Cheng. Curcuimin incorporated urea elastomers with tunable thermo-mechnical properties. Reactive & Functional Polymers, Vol. 128, 2018, pp. 97–103.10.1016/j.reactfunctpolym.2018.05.005Search in Google Scholar

[71] Solanki, A., M. Das, and S. Thakore. A review on carbohydrate embedded polyurethanes: An emerging area in the scope of biomedical applications. Carbohydrate Polymers, Vol. 181, Feb. 1, 2018, pp. 1003–1016.10.1016/j.carbpol.2017.11.049Search in Google Scholar PubMed

[72] Lyman, D. J., and S. M. Rowland. Biomedical Materials. Willey, 2007.10.1002/0471440264.pst551Search in Google Scholar

[73] Kretlow, J. D., S. Young, L. Klouda, M. Wong, and A. G. Mikos. Injectable biomaterials for regenerating complex craniofacial tissues. Advanced Materials, Vol. 21, No. 32-33, Sep. 4, 2009, pp. 3368–3393.10.1002/adma.200802009Search in Google Scholar PubMed PubMed Central

[74] Garcia, J. M., F. C. Garcia, F. Serna, and J. L. de la Pe na. High performance aroamtic polyamides. Progress in Polymer Science, Vol. 35, No. 5, 2010, pp. 623–686.10.1016/j.progpolymsci.2009.09.002Search in Google Scholar

[75] Nguyen, P. H., S. Spoljaric, and J. Seppala. Redefininf polyamide property profiles via renewable long-chain aliphatic segments: Towards impact resistance nad low water absporption. European Polymer Journal, Vol. 109, 2018, pp. 16–25.10.1016/j.eurpolymj.2018.08.057Search in Google Scholar

[76] Wang, Z., W. Wei, and W. Wue. Synthesis of fully bio-based polyamides with tunable properties by employing itaconic acid. Polymer, Vol. 55, No. 19, 2014, pp. 4846–4856.10.1016/j.polymer.2014.07.034Search in Google Scholar

[77] Almirall, A., G. Larrecq, J. A. Delgado, S. Martínez, J. A. Planell, and M. P. Ginebra. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an alpha-TCP paste. Biomaterials, Vol. 25, No. 17, Aug. 2004, pp. 3671–3680.10.1016/j.biomaterials.2003.10.066Search in Google Scholar PubMed

[78] Bencherif, S. A., R. W. Sands, D. Bhatta, P. Arany, C. S. Verbeke, D. A. Edwards, and D. J. Mooney. Injectable preformed scaffolds with shape-memory properties. Proceedings of the National Academy of Sciences of the United States of America, Vol. 109, No. 48, Nov. 27, 2012, pp. 19590–19595.10.1073/pnas.1211516109Search in Google Scholar PubMed PubMed Central

[79] Abutalib, M. M. Insights into the structural, optical, thermal, dielectric, and electrical properties of PMMA/PANI loaded with graphene oxide nanoparticles. Physica B, Condensed Matter, Vol. 552, 2019, pp. 19–29.10.1016/j.physb.2018.09.034Search in Google Scholar

[80] Li, J., S. Jin, G. Lan, S. Chen, and L. Li. Molecular dynamics simulations on miscibility, glass transition temperature and mechanical properties of PMMA/DBP binary system. Journal of Molecular Graphics & Modelling, Vol. 84, Sep. 2018, pp. 182–188.10.1016/j.jmgm.2018.07.005Search in Google Scholar PubMed

[81] Shakeri, F., A. Nodehi, and M. Atai. PMMA/double-modified organoclay nanocomposites as fillers for denture base materials with improved mechanical properties. Journal of the Mechanical Behavior of Biomedical Materials, Vol. 90, Feb. 2019, pp. 11–19.10.1016/j.jmbbm.2018.09.033Search in Google Scholar PubMed

[82] Montana, J. S., S. Roland, E. Richaud, and G. Miquelard-Garnier. Nanostructuration effet on the mechanical properties of PMMA toughened by a triblock acrykate copolymer using multilayer coextrusion. Polymer, Vol. 149, 2018, pp. 124–133.10.1016/j.polymer.2018.06.048Search in Google Scholar

[83] Guelcher, S. A. Biodegradable polyurethanes: Synthesis and applications in regenerative medicine. Tissue Engineering. Part B, Reviews, Vol. 14, No. 1, Mar. 2008, pp. 3–17.10.1089/teb.2007.0133Search in Google Scholar PubMed

[84] Kumar, R., D. P. Mondal, A. Chaudhary, M. Shafeeq, and S. Kumari. Excellent EMI shielding performance and thermal insulating properties in lightweight, multifunctional carbon-cenosphere composite foams. Composites. Part A, Applied Science and Manufacturing, Vol. 112, 2018, pp. 475–484.10.1016/j.compositesa.2018.07.003Search in Google Scholar

[85] Nilsson, M., E. Fernández, S. Sarda, L. Lidgren, and J. A. Planell. Characterization of a novel calcium phosphate/sulphate bone cement. Journal of Biomedical Materials Research, Vol. 61, No. 4, Sep. 15, 2002, pp. 600–607.10.1002/jbm.10268Search in Google Scholar PubMed

[86] Sarda, S., M. Nilsson, M. Balcells, and E. Fernández. Influence of surfactant molecules as air-entraining agent for bone cement macroporosity. Journal of Biomedical Materials Research. Part A, Vol. 65, No. 2, May 1, 2003, pp. 215–221.10.1002/jbm.a.10458Search in Google Scholar

[87] Habraken, W. J., L. T. de Jonge, J. G. Wolke, L. Yubao, A. G. Mikos, and J. A. Jansen. Introduction of gelatin microspheres into an injectable calcium phosphate cement. Journal of Biomedical Materials Research. Part A, Vol. 87, No. 3, Dec. 1, 2008, pp. 643–655.10.1002/jbm.a.31703Search in Google Scholar

[88] Liu, J., H. H. Xu, H. Zhou, M. D. Weir, Q. Chen, and C. A. Trotman. Human umbilical cord stem cell encapsulation in novel macroporous and injectable fibrin for muscle tissue engineering. Acta Biomaterialia, Vol. 9, No. 1, Jan. 2013, pp. 4688–4697.10.1016/j.actbio.2012.08.009Search in Google Scholar

[89] Kempen, D. H., L. Lu, C. Kim, X. Zhu, W. J. Dhert, B. L. Currier, and M. J. Yaszemski. Controlled drug release from a novel injectable biodegradable microsphere/scaffold composite based on poly(propylene fumarate). Journal of Biomedical Materials Research. Part A, Vol. 77, No. 1, Apr. 2006, pp. 103–111.10.1002/jbm.a.30336Search in Google Scholar

[90] Park, H., J. S. Temenoff, T. A. Holland, Y. Tabata, and A. G. Mikos. Delivery of TGF-beta1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Bio-materials, Vol. 26, No. 34, Dec. 2005, pp. 7095–7103.10.1016/j.biomaterials.2005.05.083Search in Google Scholar

[91] Moglia, R. S., J. L. Holm, N. A. Sears, C. J. Wilson, D. M. Harrison, and E. Cosgriff-Hernandez. Injectable polyHIPEs as high-porosity bone grafts. Biomacromolecules, Vol. 12, No. 10, Oct. 10, 2011, pp. 3621–3628.10.1021/bm2008839Search in Google Scholar

[92] Zhou, S., A. Bismarck, and J. H. Steinke. Thermoresponsive macroporous scaffolds prepared by emulsion templating. Macro-molecular Rapid Communications, Vol. 33, No. 21, Nov. 14, 2012, pp. 1833–1839.10.1002/marc.201200336Search in Google Scholar

[93] Zhang, J. Y., E. J. Beckman, N. P. Piesco, and S. Agarwal. A new peptide-based urethane polymer: Synthesis, biodegradation, and potential to support cell growth in vitro. Biomaterials, Vol. 21, No. 12, Jun. 2000, pp. 1247–1258.10.1016/S0142-9612(00)00005-3Search in Google Scholar

[94] Knighton, D. R., and V. D. Fiegel. Regulation of cutaneous wound healing by growth factors and the microenvironment. Investigative Radiology, Vol. 26, No. 6, Jun. 1991, pp. 604–611.10.1097/00004424-199106000-00020Search in Google Scholar PubMed

[95] Haukipuro, K., J. Melkko, L. Risteli, M. Kairaluoma, and J. Risteli. Synthesis of type I collagen in healing wounds in humans. Annals of Surgery, Vol. 213, No. 1, Jan. 1991, pp. 75–80.10.1097/00000658-199101000-00013Search in Google Scholar PubMed PubMed Central

[96] Lawrence, J. C. What materials for dressings? Injury, Vol. 13, No. 6, May 1982, pp. 500–512.10.1016/0020-1383(82)90166-8Search in Google Scholar

[97] Des cendres volante pour ameliorer les materiaux, Industrie & Technologies.Search in Google Scholar

[98] Abo-Shosha, M. H., F. A. Nassar, K. M. Haggag, Z. El-Sayed, and A. G. Hassabo. Utilization of some fatty acid/peg condensates as emulsifiers in kerosene paste pigment printing. Research Journal of Textile and Apparel, Vol. 13, No. 1, 2009, pp. 65–77.10.1108/RJTA-13-01-2009-B007Search in Google Scholar

[99] Ibrahim, N. A., Z. M. El-Sayed, H. M. Fahmy, A. G. Hassabo, and M. H. Abo-Shosha. M. H. AboShosha, Perfume finishing of cotton / polyester fabric crosslinked with dmdheu in presence of some softeners. Research Journal of Textile and Apparel, Vol. 17, No. 4, 2013, pp. 58–63.10.1108/RJTA-17-04-2013-B007Search in Google Scholar

[100] Mohamed, A. L., M. Er-Rafik, and M. Moller. Suitability of Confocal Raman microscopy for monitoring the penetration of PDMS compounds into cotton fibres. Carbohydrate Polymers, Vol. 96, No. 1, Jul. 1, 2013, pp. 305–313.10.1016/j.carbpol.2013.03.087Search in Google Scholar

[101] Mohamed, A. L., M. Er-Rafik, and M. Moller. Supercritical carbon dioxide assisted silicon based finishing of cellulosic fabric: A novel approach. Carbohydrate Polymers, Vol. 98, No. 1, Oct. 15, 2013, pp. 1095–1107.10.1016/j.carbpol.2013.06.027Search in Google Scholar

[102] Waly, A., N. Y. Abou-Zeid, M. M. Marie, M. A. El-Sheikh, and A. L. Mohamed. Special finishing of cotton to impart flame-retardancy, easy care finishing and antimicrobial properties. Research Journal of Textile and Apparel, Vol. 13, No. 3, 2009, pp. 10–26.10.1108/RJTA-13-03-2009-B002Search in Google Scholar

[103] Clement, J. L., and P. S. Jarrett. Antibacterial silver. Metal-Based Drugs, Vol. 1, No. 5-6, 1994, pp. 467–482.10.1155/MBD.1994.467Search in Google Scholar

[104] Politano, A. D., K. T. Campbell, L. H. Rosenberger, and R. G. Sawyer. Use of silver in the prevention and treatment of infections: Silver review. Surgical Infections, Vol. 14, No. 1, Feb. 2013, pp. 8–20.10.1089/sur.2011.097Search in Google Scholar

[105] Dunn, K., and V. Edwards-Jones. The role of Acticoat with nanocrystalline silver in the management of burns. Burns, Vol. 30, Supplement 1, Jul. 2004, pp. S1–S9.10.1016/S0305-4179(04)90000-9Search in Google Scholar

[106] Atiyeh, B. S., M. Costagliola, S. N. Hayek, and S. A. Dibo. Effect of silver on burn wound infection control and healing: Review of the literature. Burns, Vol. 33, No. 2, Mar. 2007, pp. 139–148.10.1016/j.burns.2006.06.010Search in Google Scholar PubMed

[107] Archana, D., B. K. Singh, J. Dutta, and P. K. Dutta. Chitosan-PVP-nano silver oxide wound dressing: In vitro and in vivo evaluation. International Journal of Biological Macromolecules, Vol. 73, Feb. 2015, pp. 49–57.10.1016/j.ijbiomac.2014.10.055Search in Google Scholar PubMed

[108] Cao, X. G., and H. Y. Zhang. Investigation into conductivity of silver-coated cenospehere composites prepared by a modified electroless process. Applied Surface Science, Vol. 264, 2013, pp. 746–760.10.1016/j.apsusc.2012.10.116Search in Google Scholar

Received: 2019-03-04
Accepted: 2019-07-08
Published Online: 2020-05-04

© 2020 Damian S. Nakonieczny et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/rams-2020-0011/html
Scroll to top button