Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access May 8, 2020

Grain Orientation Induced Softening in Electrodeposited Gradient Nanostructured Nickel during Cold Rolling Deformation

  • Haitao Ni , Lixia Wang , Zhaodong Wang and Jiang Zhu EMAIL logo

Abstract

Quantitative microstructural evolution and the corresponding microhardness of electrodeposited nanostructured nickel sheet during cold rolling deformation are investigated by x-ray diffraction, transmission electron microscopy and Vicker’s microhardness testing. Particularly, to investigate the effect of stress states on deformation behavior, two series of gradient nanostructured nickel with symmetric structures and the homogeneous counterparts with three levels of grain size are compared based on macro-statistical data. In such hierarchical sandwich-like gradient samples, the layers with larger grain size, as the soft phase, indeed sustain more deformation. Deformation-induced grain rotation changes are observed in the center layers with a relatively larger grain size, accompanied by an obvious decrease in microhardness. According to the quantitative microstructural parameters including the grain size, dislocation density and stacking fault probability before and after deformation, evaluation based on Hall-Petch and Bailey-Hirsch relationships indicates the transition from strain hardening to softening can be attributed to grain orientation change.

References

[1] Ma, E., and T. Zhu. Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Materials Today, Vol. 20, No. 6, 2017, pp. 323–331.10.1016/j.mattod.2017.02.003Search in Google Scholar

[2] Lu, K. Nanomaterials. Making strong nanomaterials ductile with gradients. Science, Vol. 345, No. 6203, 2014, pp. 1455–1456.10.1126/science.1255940Search in Google Scholar

[3] Wu, X. L., P. Jiang, L. Chen, J. F. Zhang, F. P. Yuan, and Y. T. Zhu. Synergetic Strengthening by Gradient Structure. Materials Research Letters, Vol. 2, No. 4, 2014, pp. 185–191.10.1080/21663831.2014.935821Search in Google Scholar

[4] Moering, J., X. Ma, J. Malkin, M. Yang, Y. Zhu, and S. Mathaudhu. Synergetic strengthening far beyond rule of mixtures in gradient structured aluminum rod. Scripta Materialia, Vol. 122, 2016, pp. 106–109.10.1016/j.scriptamat.2016.05.006Search in Google Scholar

[5] Zhu, L., H. Ruan, A. Chen, X. Guo, and J. Lu. Microstructures-based constitutive analysis for mechanical properties of gradient-nanostructured 304 stainless steels. Acta Materialia, Vol. 128, 2017, pp. 375–390.10.1016/j.actamat.2017.02.035Search in Google Scholar

[6] Wang, P. F., Z. Han, and K. Lu. Enhanced tribological performance of a gradient nanostructured interstitial-free steel. Wear, Vol. 402-403, 2018, pp. 100–108.10.1016/j.wear.2018.02.010Search in Google Scholar

[7] Zeng, Z., X. Li, D. Xu, L. Lu, and T. Zhu. Gradient plasticity in gradient nano-grained metals. Extreme Mechanics Letters, Vol. 8, 2015, pp. 213–219.10.1016/j.eml.2015.12.005Search in Google Scholar

[8] Ding, J., Q. Li, J. Li, S. Xue, Z. Fan, H. Wang, and X. Zhang. Mechanical behavior of structurally gradient nickel alloy. Acta Materialia, Vol. 149, 2018, pp. 57–67.10.1016/j.actamat.2018.02.021Search in Google Scholar

[9] Deng, S. Q., A. Godfrey, W. Liu, and N. Hansen. A gradient nanostructure generated in pure copper by platen friction sliding deformation. Scripta Materialia, Vol. 117, 2016, pp. 41–45.10.1016/j.scriptamat.2016.02.007Search in Google Scholar

[10] Yin, Z., L. Sun, J. Yang, Y. L. Gong, and X. K. Zhu. Mechanical behavior and deformation kinetics of gradient structured Cu-Al alloys with varying stacking fault energy. Journal of Alloys and Compounds, Vol. 687, 2016, pp. 152–160.10.1016/j.jallcom.2016.06.155Search in Google Scholar

[11] Lin, Y., J. Pan, H. F. Zhou, H. J. Gao, and Y. Li. Mechanical properties and optimal grain size distribution profile of gradient grained nickel. Acta Materialia, Vol. 153, 2018, pp. 279–289.10.1016/j.actamat.2018.04.065Search in Google Scholar

[12] Chen, Z. and Y. Chen Y. Nanocrystalline gradient engineering: Grain evolution and grain boundary networks. Computational Materials Science, Vol. 141, 2018, pp. 282–292.10.1016/j.commatsci.2017.09.047Search in Google Scholar

[13] Ni, H. T., P. Li, Z. D. Wang, Z. X. Zou, M. C. Zhao, L. X. Wang, and J. Zhu. Fabrication and Characterization of Nanocrystalline Nickel with a Grain Size Gradient by Direct Current Electrodeposition. International Journal of Electrochemical Science, Vol. 14, 2019, pp. 8429–8438.10.20964/2019.09.42Search in Google Scholar

[14] Zhang, X. Y., Q. Liu, X. L. Wu, and A. W. Zhu. Work softening and annealing hardening of deformed nanocrystalline nickel. Applied Physics Letters, Vol. 93, No. 26, 2008, pp. 261907.10.1063/1.3062849Search in Google Scholar

[15] Cao, Z. H., P. Y. Li, L. Wang, Z. H. Jiang, and X. K. Meng. A crossover from hardening to softening in nanocrystalline Ni by annealing and rolling. Applied Physics. A, Materials Science & Processing, Vol. 109, No. 3, 2012, pp. 613–619.10.1007/s00339-012-7076-2Search in Google Scholar

[16] Yang, M. X., Y. Pan, F. P. Yuan, Y. T. Zhu, and X. L. Wu. Back stress strengthening and strain hardening in gradient structure. Materials Research Letters, Vol. 4, No. 3, 2016, pp. 145–151.10.1080/21663831.2016.1153004Search in Google Scholar

[17] Wang, Y. F., C. X. Huang, M. S. Wang, Y. S. Li, and Y. T. Zhu. Quantifying the synergetic strengthening in gradient material. Scripta Materialia, Vol. 150, 2018, pp. 22–25.10.1016/j.scriptamat.2018.02.039Search in Google Scholar

[18] Zhang, K., I. V. Alexandrov, R. Z. Valiev, and K. Lu. Structural characterization of nanocrystalline copper by means of x-ray diffraction. Journal of Applied Physics, Vol. 80, No. 10, 1996, pp. 5617–5624.10.1063/1.363612Search in Google Scholar

[19] Ungár, T. E. Schafler E, and J. Gubicza. In Bulk Nanostructured Materials edited by M.J. Zehetbauer and by Y.T. Zhu, Wiley-VCH, Weinheim, 2009, pp. 361–386.10.1002/9783527626892.ch17Search in Google Scholar

[20] Ni, H. T., and X. Y. Zhang. Effect of iron content on mechanical behavior of nanocrystalline nickel and alloys. Materials Science and Engineering A, Vol. 541, 2012, pp. 216–221.10.1016/j.msea.2012.02.028Search in Google Scholar

[21] Ni, H., H. Lv, Z. Wang, J. Zhu, and X. Zhang. Comparative Study on Microstructural Stability of Pre-annealed Electrodeposited Nanocrystalline Nickel During Pack Rolling. Nanoscale Research Letters, Vol. 13, No. 1, 2018, pp. 337.10.1186/s11671-018-2749-1Search in Google Scholar PubMed PubMed Central

[22] Chen, W., Z. S. You, N. R. Tao, Z. H. Jin, and L. Lu. Mechanically-induced grain coarsening in gradient nano-grained copper. Acta Materialia, Vol. 125, 2017, pp. 255–264.10.1016/j.actamat.2016.12.006Search in Google Scholar

[23] Ni, H. T., J. Zhu, Z. D. Wang, H. Y. Lv, Y. Y. Su, and X. Y. Zhang. A brief overview on grain growth of bulk electrodeposited nanocrystalline nickel and nickel-iron alloys. Reviews on Advanced Materials Science, Vol. 58, No. 1, 2019, pp. 98–106.10.1515/rams-2019-0011Search in Google Scholar

[24] Chen, B., K. Lutker, J. Lei, J. Yan, S. Yang, and H. K. Mao. Detecting grain rotation at the nanoscale. Proceedings of the National Academy of Sciences of the United States of America, Vol. 111, No. 9, 2014, pp. 3350–3353.10.1073/pnas.1324184111Search in Google Scholar PubMed PubMed Central

[25] Li, J., A. K. Soh, and X. Wu. On nanograin rotation by dislocation climb in nanocrystalline materials. Scripta Materialia, Vol. 78-79, 2014, pp. 5–8.10.1016/j.scriptamat.2013.12.021Search in Google Scholar

[26] Moldovan, D., D. Wolf, S. R. Phillpot, and A. J. Haslam. Trends in Nanoscale Mechanics. Harik V. M. and M. D. Salas, Eds. Springer, Holland, 2003, Chapter 2, pp. 35–59.10.1007/978-94-017-0385-7_2Search in Google Scholar

[27] Vuppuluri, A., and S. Vedantam. Grain growth rate for coupled grain boundary migration and grain rotation in nanocrystalline materials. Philosophical Magazine Letters, Vol. 96, No. 9, 2016, pp. 339–346.10.1080/09500839.2016.1220683Search in Google Scholar

[28] Madhavan, R., S. Nagaraju, and S. Suwas. Texture Evolution in Nanocrystalline Nickel: Critical Role of Strain Path. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, Vol. 46, No. 2, 2015, pp. 915–925.10.1007/s11661-014-2673-7Search in Google Scholar

[29] Lohmiller, J., M. Grewer, C. Braun, A. Kobler, C. Kübel, K. Schüler, V. Honkimäki, H. Hahn, O. Kraft, R. Birringer, and P. A. Gruber. Untangling dislocation and grain boundary mediated plasticity in nanocrystalline nickel. Acta Materialia, Vol. 65, 2014, pp. 295–307.10.1016/j.actamat.2013.10.071Search in Google Scholar

[30] Yuan, R., I. J. Beyerlein, and C. Zhou. Coupled crystal orientationsize effects on the strength of nano crystals. Scientific Reports, Vol. 6, No. 1, 2016, id. 26254, DOI: https://doi.org/10.1038/srep26254.10.1038/srep26254Search in Google Scholar PubMed PubMed Central

[31] Godon, A., J. Creus, S. Cohendoz, E. Conforto, X. Feaugas, P. Girault, and C. Savall. Effects of grain orientation on the Hall– Petch relationship in electrodeposited nickel with nanocrystalline grains. Scripta Materialia, Vol. 62, No. 6, 2010, pp. 403–406.10.1016/j.scriptamat.2009.11.038Search in Google Scholar

Received: 2019-08-10
Accepted: 2019-12-17
Published Online: 2020-05-08

© 2020 Haitao Ni et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/rams-2020-0105/html
Scroll to top button