Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 24, 2020

High-performance pervaporation chitosan-based membranes: new insights and perspectives

  • Roberto Castro-Muñoz

    Roberto Castro-Muñoz has authored over 45 scientific papers and 10 book chapters in the field of membrane processes and their application to environmental and food technology. He is currently a research fellow at University of Chemistry and Technology Prague (Czech Republic). He is also a researcher at Tecnologico de Monterrey (Mexico). His main research activities are oriented towards mixed matrix membranes for gas separation and PV.

    ORCID logo EMAIL logo
    , José González-Valdez and M. Zamidi Ahmad

Abstract

Today, the need of replacing synthetic polymers in the membrane preparation for diverse pervaporation (PV) applications has been recognized collectively and scientifically. Chitosan (CS), a bio-polymer, has been studied and proposed to achieve this goal especially in specific azeotropic water-organic, organic-water, and organic-organic separations, as well as in assisting specific processes (e.g. seawater desalination and chemical reactions). Different concepts of CS-based membranes have been developed, which include material blending and composite and mixed matrix membranes which have been tested for different separations. Hereby, the goal of this review is to provide a critical overview of the ongoing CS-based membrane developments, paying a special attention to the most relevant findings and results in the field. Furthermore, future trends of CS-based membranes in PV technology are presented, as well as concluding remarks and suggested strategies for the new scientist in the field.

About the author

Roberto Castro-Muñoz

Roberto Castro-Muñoz has authored over 45 scientific papers and 10 book chapters in the field of membrane processes and their application to environmental and food technology. He is currently a research fellow at University of Chemistry and Technology Prague (Czech Republic). He is also a researcher at Tecnologico de Monterrey (Mexico). His main research activities are oriented towards mixed matrix membranes for gas separation and PV.

Nomenclature

β

separation factor

CA

cellulose acetate

CMC

carboxymethyl cellulose

CMS

carbon molecular sieves

CS

chitosan

D

diffusivity

J

permeate flux

MMM

mixed matrix membranes

MOF

metal-organic frameworks

MWNTs

multiwalled carbon nanotubes

P

permeability

PBI

polybenzoimidazole

PDMS

polydimethylsiloxane

PEBA

polyether block amide

POMS

poly(octylmethylsiloxane)

PTMSP

poly(1-(trimethylsilyl)- 1-propyne)

PV

pervaporation

PVA

polyvinyl alcohol

S

solubility

ZIFs

zeolitic-imidazolate frameworks

Acknowledgments

R. Castro-Muñoz acknowledges the European Commission-Education, Audiovisual and Culture Executive Agency (EACEA) for his PhD scholarship under the program Erasmus Mundus Doctorate in Membrane Engineering-EUDIME (FPA No 2011-0014, Edition V; http:/eudime.unical.it). R. Castro-Muñoz and J. González-Valdez would also like to thank the School of Science and Engineering and the FEMSA-Biotechnology Center at Tecnológico de Monterrey for their support through the Bioprocess (0020209I13) Focus Group.

  1. Conflict of interest statement: The authors declare no conflicts of interest.

References

Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 2004; 100: 5–28.10.1016/j.jconrel.2004.08.010Search in Google Scholar

Ahmad MZ, Pelletier H, Martin-Gil V, Castro-Muñoz R, Fila V. Chemical crosslinking of 6FDA-ODA and 6FDA-ODA:DABA for improved CO2/CH4 separation. Membranes 2018; 8: 1–16.10.3390/membranes8030067Search in Google Scholar

Anitha A, Sanoj Rejinold N, Bumgardner J, Nair S, Jayakumar R. Approaches for functional modification or cross-linking of chitosan. In: Sarmento B, das Neves J, editors. Chitosan-based systems for biopharmaceuticals, 1st ed., United States: John Wiley & Sons Ltd, 2012: 107–124.10.1002/9781119962977.ch7Search in Google Scholar

Anitha A, Sowmya S, Kumar PTS, Deepthi S, Chennazhi KP, Ehrlich H, Jayakumar R. Chitin and chitosan in selected biomedical applications. Prog Polym Sci 2014; 39: 1644–1667.10.1016/j.progpolymsci.2014.02.008Search in Google Scholar

Asghari M, Sheikh M, Afsari M, Dehghani M. Molecular simulation and experimental investigation of temperature effect on chitosan-nanosilica supported mixed matrix membranes for dehydration of ethanol via pervaporation. J Mol Liq 2017; 246: 7–16.10.1016/j.molliq.2017.09.045Search in Google Scholar

Baker RW, Wijmans JG, Huang Y. Permeability, permeance and selectivity: a preferred way of reporting pervaporation performance data. J Membr Sci 2010; 348: 346–352.10.1016/j.memsci.2009.11.022Search in Google Scholar

Baudot A, Marin M. Dairy aroma compounds recovery by pervaporation. J Membr Sci 1996; 120: 207–220.10.1016/0376-7388(96)00144-5Search in Google Scholar

Beppu MM, Vieira RS, Aimoli CG, Santana CC. Crosslinking of chitosan membranes using glutaraldehyde: effect on ion permeability and water absorption. J Membr Sci 2007; 301: 126–130.10.1016/j.memsci.2007.06.015Search in Google Scholar

Castro-Muñoz R. Pervaporation: the emerging technique for extracting aroma compounds from food systems. J Food Eng 2019; 253: 27–39.10.1016/j.jfoodeng.2019.02.013Search in Google Scholar

Castro-Muñoz R, González-Valdez J. New trends in biopolymer-based membranes for pervaporation. Molecules 2019; 24: 3584.10.3390/molecules24193584Search in Google Scholar PubMed PubMed Central

Casado-Coterillo C, Andrés F, Téllez C, Coronas J, Irabien Á. Synthesis and characterization of ETS-10/chitosan nanocomposite membranes for pervaporation. Sep Sci Technol 2014; 49: 1903–1909.10.1080/01496395.2014.908921Search in Google Scholar

Castro-Muñoz R, Galiano F, Fíla V, Drioli E, Figoli A. Matrimid ® 5218 dense membrane for the separation of azeotropic MeOH-MTBE mixtures by pervaporation. Sep Purif Technol 2018a; 199: 27–36.10.1016/j.seppur.2018.01.045Search in Google Scholar

Castro-Muñoz R, Galiano F, Fíla V, Drioli E, Figoli A. Mixed matrix membranes (MMMs) for ethanol purification through pervaporation: current state of the art. Rev Chem Eng 2018b, https://doi.org/10.1515/revce-2017-0115.Search in Google Scholar

Castro-Munoz R, Iglesia ÓD, Fíla V, Téllez C, Coronas J. Pervaporation-assisted esterification reactions by means of mixed matrix membranes. Ind Eng Chem Res 2018c; 57: 15998–16011.10.1021/acs.iecr.8b01564Search in Google Scholar

Castro-Muñoz R, Galiano F, de la Iglesia Ó, Fíla V, Tellez C, Coronas J, Figoli A. Graphene oxide – filled polyimide membranes in pervaporative separation of azeotropic methanol-MTBE mixtures. Sep Purif Technol 2019a; 224: 265–272.10.1016/j.seppur.2019.05.034Search in Google Scholar

Castro-Muñoz R, Buera-Gonzalez J, de la Iglesia O, Galiano F, Fíla V, Malankowska M, Coronas J. Towards the dehydration of ethanol using pervaporation cross-linked poly(vinyl alcohol)/graphene oxide membranes. J Membr Sci 2019b; 582: 423–434.10.1016/j.memsci.2019.03.076Search in Google Scholar

Castro-Muñoz R, Galiano F, Figoli A. Chemical and bio-chemical reactions assisted by pervaporation technology. Crit Rev Biotechnol 2019c; 39: 884–903.10.1080/07388551.2019.1631248Search in Google Scholar PubMed

Chanachai A, Meksup K, Jiraratananon R. Coating of hydrophobic hollow fiber PVDF membrane with chitosan for protection against wetting and flavor loss in osmotic distillation process. Sep Purif Technol 2010; 72: 217–224.10.1016/j.seppur.2010.02.014Search in Google Scholar

Chen JH, Dong XF, He YS. Investigation into glutaraldehyde crosslinked chitosan/cardo-poly-etherketone composite membrane for pervaporation separation of methanol and dimethyl carbonate mixtures. RSC Adv 2016; 6: 60765–60772.10.1039/C6RA10854GSearch in Google Scholar

Cheng PI, Hong PD, Lee KR, Lai JY, Tsai YL. High permselectivity of networked PVA/GA/CS-Ag+-membrane for dehydration of isopropanol. J Membr Sci 2018; 564: 926–934.10.1016/j.memsci.2018.06.019Search in Google Scholar

Chrzanowska E, Gierszewska M, Kujawa J, Raszkowska-Kaczor A, Kujawski W. Development and characterization of polyamide-supported chitosan nanocomposite membranes for hydrophilic pervaporation. Polymers 2018; 10: 868.10.3390/polym10080868Search in Google Scholar PubMed PubMed Central

Claes S, Vandezande P, Mullens S, Leysen R, De Sitter K, Andersson A, Van Bael MK. High flux composite PTMSP-silica nanohybrid membranes for the pervaporation of ethanol/water mixtures. J Membr Sci 2010; 351: 160–167.10.1016/j.memsci.2010.01.043Search in Google Scholar

Clasen C, Whilhelms T, Kulicke W. Formation and characterization of chitosan membranes. Biomacromolecules 2006; 7: 3210–3222.10.1021/bm060486xSearch in Google Scholar PubMed

Crespo J, Brazinha C. Fundamentals of pervaporation. In Basile A, Figoli A, Khayet A, editor. Pervaporation, vapour permeation and membrane distillation, 1st ed., Cambridge UK: Elsevier Ltd, 2015:1–17.10.1016/B978-1-78242-246-4.00001-5Search in Google Scholar

Daraei P, Madaeni SS, Salehi E, Ghaemi N, Ghari HS, Khadivi MA, Rostami E. Novel thin film composite membrane fabricated by mixed matrix nanoclay/chitosan on PVDF microfiltration support: preparation, characterization and performance in dye removal. J Membr Sci 2013; 436: 97–108.10.1016/j.memsci.2013.02.031Search in Google Scholar

Dechnik J, Gascon J, Doonan CJ, Janiak C, Sumby CJ. Mixed-matrix membranes. Angew Chem 2017; 56: 9292–9310.10.1002/anie.201701109Search in Google Scholar PubMed

Dharupaneedi SP, Anjanapura RV, Han JM, Aminabhavi TM. Functionalized graphene sheets embedded in chitosan nanocomposite membranes for ethanol and isopropanol dehydration via pervaporation. Ind Eng Chem Res 2014; 53: 14474–14484.10.1021/ie502751hSearch in Google Scholar

Dudek G, Gnus M, Turczyn R, Strzelewicz A, Krasowska M. Pervaporation with chitosan membranes containing iron oxide nanoparticles. Sep Purif Technol 2014; 133: 8–15.10.1016/j.seppur.2014.06.032Search in Google Scholar

El-Azzami LA, Grulke EA. Carbon dioxide separation from hydrogen and nitrogen facilitated transport in arginine salt-chitosan membranes. J Membr Sci 2009; 328: 15–22.10.1016/j.memsci.2008.08.038Search in Google Scholar

Fazlifard S, Mohammadi T, Bakhtiari O. Chitosan/ZIF-8 Mixed-matrix membranes for pervaporation dehydration of isopropanol. Chem Eng Technol 2017; 40: 648–655.10.1002/ceat.201500499Search in Google Scholar

Fernandez JG, Ingber DE. Manufacturing of large-scale functional objects using biodegradable chitosan bioplastic. Macromol Mater Eng 2014; 299: 932–938.10.1002/mame.201300426Search in Google Scholar

Galiano F, Falbo F, Figoli A. Polymeric pervaporation membranes: organic-organic separation. In Visakh O, Nazarenko P, editors. Nanostructured polymer membranes, 1st ed., Massachusetts, United States: Scrivener Publishing LLC, 2016:281–304.10.1002/9781118831823.ch7Search in Google Scholar

Galiano F, Briceño K, Marino T, Molino A, Christensen KV, Figoli A. Advances in biopolymer-based membrane preparation and applications. J Membr Sci 2018; 564: 562–586.10.1016/j.memsci.2018.07.059Search in Google Scholar

Gao C, Zhang M, Jiang Z, Liao J, Xie X, Huang T, Pan F. Preparation of a highly water-selective membrane for dehydration of acetone by incorporating potassium montmorillonite to construct ionized water channel. Chem Eng Sci 2014; 135: 461–471.10.1016/j.ces.2014.12.044Search in Google Scholar

Gao C, Zhang M, Pan F, Wang L, Liao J, Nie T, Jiang Z. Pervaporation dehydration of an acetone/water mixture by hybrid membranes incorporated with sulfonated carbon molecular sieves. RSC Adv 2016; 6: 55272–55281.10.1039/C6RA03505ASearch in Google Scholar

Han Y, Wang K, Lai J, Liu Y. Hydrophilic chitosan-modified polybenzoimidazole membranes for pervaporation dehydration of isopropanol aqueous solutions. J Membr Sci 2014; 463: 17–23.10.1016/j.memsci.2014.03.052Search in Google Scholar

Harish Prashanth KV, Tharanathan RN. Crosslinked chitosan – preparation and characterization. Carbohydr Res 2006; 341: 169–173.10.1016/j.carres.2005.10.016Search in Google Scholar

Hirano S, Yamaguchi R, Fukui N, Iwata M. A chitosan oxalate gel: its conversion to an N-acetylchitosan gel via a chitosan gel. Carbohydr Res 1990; 201: 145–149.10.1016/0008-6215(90)84231-ISearch in Google Scholar

Hsu SC, Don TM, Chiu WY. Free radical degradation of chitosan with potassium persulfate. Polym Degrad Stabil 2002; 75: 73–83.10.1016/S0141-3910(01)00205-1Search in Google Scholar

Hung WS, Chang SM, Lecaros RLG, Ji YL, An QF, Hu CC, Lai JY. Fabrication of hydrothermally reduced graphene oxide/chitosan composite membranes with a lamellar structure on methanol dehydration. Carbon 2017; 117: 112–119.10.1016/j.carbon.2017.02.088Search in Google Scholar

Islam S, Raman M, Islam M. Chitin and chitosan: structure, properties and applications in biomedical engineering. J Polym Environ 2017; 25: 854–866.10.1007/s10924-016-0865-5Search in Google Scholar

Jia Z, Wu G. Metal-organic frameworks based mixed matrix membranes for pervaporation. Micropor Mesopor Mat 2016; 235: 151–159.10.1016/j.micromeso.2016.08.008Search in Google Scholar

Kang C, Lin Y, Huang Y, Tung K, Chang K. Synthesis of ZIF-7/chitosan mixed-matrix membranes with improved separation performance of water/ethanol mixtures. J Membr Sci 2013; 438: 105–111.10.1016/j.memsci.2013.03.028Search in Google Scholar

Khiar ASA, Puteh R, Arof AK. Conductivity studies of a chitosan-based polymer electrolyte. Physica B 2006; 373: 23–27.10.1016/j.physb.2005.10.104Search in Google Scholar

Knozowska K, Kujawska A, Kujawa J, Kujawski W, Bryjak M, Chrzanowska E, Kujawski JK. Performance of commercial composite hydrophobic membranes applied for pervaporative reclamation of acetone, butanol, and ethanol from aqueous solutions: binary mixtures. Sep Purif Technol 2017; 188: 512–522.10.1016/j.seppur.2017.07.072Search in Google Scholar

Kujawski W. Application of pervaporation and vapour permeation in environmental protection. Pol J Environ 2000; 9: 13–26.Search in Google Scholar

Kujawski W, Krajewski SR. Sweeping gas pervaporation with hollow-fiber ion-exchange membranes. Desalination 2004; 162: 129–135.10.1016/S0011-9164(04)00036-0Search in Google Scholar

Langari S, Saljoughi E, Mousavi SM. Chitosan/polyvinyl alcohol/amino functionalized multiwalled carbon nanotube pervaporation membranes: synthesis, characterization, and performance. Polym Adv Technol 2018; 29: 84–94.10.1002/pat.4091Search in Google Scholar

Li J, Sculley J, Zhou H. Metal–organic frameworks for separations. Chem Rev 2012; 112: 869–932.10.1021/cr200190sSearch in Google Scholar PubMed

Li Q, Liu Q, Zhao J, Hua Y, Sun J, Duan J, Jin W. High efficient water/ethanol separation by a mixed matrix membrane incorporating MOF filler with high water adsorption capacity. J Membr Sci 2017; 544: 68–78.10.1016/j.memsci.2017.09.021Search in Google Scholar

Liu YL, Yu CH, Lee KR, Lai JY. Chitosan/poly(tetrafluoroethylene) composite membranes using in pervaporation dehydration processes. J Membr Sci 2007; 287: 230–236.10.1016/j.memsci.2006.10.040Search in Google Scholar

Lin YK, Nguyen VH, Yu JCC, Lee CW, Deng YH, Wu JCS, Chen CL. Biodiesel production by pervaporation-assisted esterification and pre-esterification using graphene oxide/chitosan composite membranes. J Taiwan Inst Chem Eng 2017; 79: 23–30.10.1016/j.jtice.2017.06.031Search in Google Scholar

Lin YF, Wu CY, Liu TY, Lin KYA, Tung KL, Chung TW. Synthesis of mesoporous SiO2 xerogel/chitosan mixed-matrix membranes for butanol dehydration. J Ind Eng Chem 2018; 57: 297–303.10.1016/j.jiec.2017.08.036Search in Google Scholar

Matsuoka Y, Kanda N, Lee YM, Higuchi A. Chiral separation of phenylalanine in ultrafiltration through DNA-immobilized chitosan membranes. J Membr Sci 2006; 280: 116–123.10.1016/j.memsci.2006.01.013Search in Google Scholar

Moulik S, Bukke V, Sajja SC, Sridhar S. Chitosan-polytetrafluoroethylene composite membranes for separation of methanol and toluene by pervaporation. Carbohydr Polym 2018; 193: 28–38.10.1016/j.carbpol.2018.03.069Search in Google Scholar PubMed

Nasution TI, Nainggolan I, Hutagalung SD, Ahmad KR, Ahmad ZA. The sensing mechanism and detection of low concentration acetone using chitosan-based sensors. Sensor Actuat B-Chem 2013; 177: 522–528.10.1016/j.snb.2012.11.063Search in Google Scholar

Pandey RP, Shahi VK. Functionalized silica-chitosan hybrid membrane for dehydration of ethanol/water azeotrope: effect of cross-linking on structure and performance. J Membr Sci 2013; 444: 116–126.10.1016/j.memsci.2013.04.065Search in Google Scholar

Prasad NS, Moulik S, Bohra S, Rani KY, Sridhar S. Solvent resistant chitosan/poly(ether-block-amide) composite membranes for pervaporation of n-methyl-2-pyrrolidone/water mixtures. Carbohydr Polym 2016; 136: 1170–1181.10.1016/j.carbpol.2015.10.037Search in Google Scholar PubMed

Premakshi HG, Ramesh K, Kariduraganavar MY. Modification of crosslinked chitosan membrane using NaY zeolite for pervaporation separation of water-isopropanol mixtures. Chem Eng Res Des 2015a; 94: 32–43.10.1016/j.cherd.2014.11.014Search in Google Scholar

Premakshi HG, Sajjan AM, Kariduraganavar MY. Development of pervaporation membranes using chitosan and titanium glycine-N,N-dimethylphosphonate for dehydration of isopropanol. J Mater Chem A 2015b; 3: 3952–3961.10.1039/C4TA05274ASearch in Google Scholar

Qian X, Li N, Wang Q, Ji S. Chitosan/graphene oxide mixed matrix membrane with enhanced water permeability for high-salinity water desalination by pervaporation. Desalination 2018; 438: 83–96.10.1016/j.desal.2018.03.031Search in Google Scholar

Rachipudi PS, Kittur AA, Sajjan AM, Kariduraganavar MY. Synthesis and characterization of hybrid membranes using chitosan and 2-(3,4-epoxycyclohexyl) ethyltrimethoxysilane for pervaporation dehydration of isopropanol. J Membr Sci 2013; 441: 83–92.10.1016/j.memsci.2013.03.055Search in Google Scholar

Sajjan AM, Premakshi HG, Kariduraganavar MY. Synthesis and characterization of GTMAC grafted chitosan membranes for the dehydration of low water content isopropanol by pervaporation. J Ind Eng Chem 2015; 25: 151–161.10.1016/j.jiec.2014.10.027Search in Google Scholar

Santoro S, Galiano F, Jansen JC, Figoli A. Strategy for scale-up of SBS pervaporation membranes for ethanol recovery from diluted aqueous solutions. Sep Purif Technol 2017; 176: 252–261.10.1016/j.seppur.2016.12.018Search in Google Scholar

Seoane B, Coronas J, Gascon I, Benavides ME, Karvan O, Caro J, Gascon J. Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture? Chem Soc Rev 2015; 44: 2421–2454.10.1039/C4CS00437JSearch in Google Scholar

Shen J, Chu Y, Ruan H, Wu L, Gao C, Van der Bruggen B. Pervaporation of benzene/cyclohexane mixtures through mixed matrix membranes of chitosan and Ag+/carbon nanotubes. J Membr Sci 2014; 462: 160–169.10.1016/j.memsci.2014.03.040Search in Google Scholar

Tsai HA, Chen WH, Kuo CY, Lee KR, Lai JY. Study on the pervaporation performance and long-term stability of aqueous iso-propanol solution through chitosan/polyacrylonitrile hollow fiber membrane. J Membr Sci 2008; 309: 146–155.10.1016/j.memsci.2007.10.018Search in Google Scholar

Unlu D, Hilmioglu ND. Pervaporation catalytic membrane reactor application over functional chitosan membrane. J Membr Sci 2018; 559: 138–147.10.1016/j.memsci.2018.05.005Search in Google Scholar

Uragami T, Saito T, Miyata T. Pervaporative dehydration characteristics of an ethanol/water azeotrope through various chitosan membranes. Carbohydr Polym 2015; 120: 1–6.10.1016/j.carbpol.2014.11.032Search in Google Scholar PubMed

Ursino C, Castro-Muñoz R, Drioli E, Gzara L, Albeirutty MH, Figoli A. Progress of nanocomposite membranes for water treatment. Membranes 2018; 8: 18.10.3390/membranes8020018Search in Google Scholar PubMed PubMed Central

Van Der Bruggen B, Luis P. Pervaporation as a tool in chemical engineering: a new era? Curr Opin Chem Eng 2014; 4: 47–53.10.1016/j.coche.2014.01.005Search in Google Scholar

Vanherck K, Koeckelberghs G, Vankelecom IFJ. Crosslinking polyimides for membrane applications: a review. Prog Polym Sci 2013; 38: 874–896.10.1016/j.progpolymsci.2012.11.001Search in Google Scholar

Vinu M, Senthil Raja D, Jiang YC, Liu TY, Xie YY, Lin YF, Wu KCW. Effects of structural crystallinity and defects in microporous Al-MOF filled chitosan mixed matrix membranes for pervaporation of water/ethanol mixtures. J Taiwan Inst Chem Eng 2018; 83: 143–151.10.1016/j.jtice.2017.11.007Search in Google Scholar

Wei YC, Hudson SM, Mayer JM, Kaplan DL. The crosslinking of chitosan fibers. J Polym Sci Polym Chem 1992; 30: 2187–2193.10.1002/pola.1992.080301013Search in Google Scholar

Wijmans JG, Baker RW. The solution-diffusion model: a review. J Membr Sci 1995; 107: 1–21.10.1016/0376-7388(95)00102-ISearch in Google Scholar

Wu JK, Wang XS, Chen KF, Zhou GJ, Li X, Xu J, An QF. The states of sulfate groups affect the mechanical and separation properties of carboxymethyl cellulose/chitosan complex membranes. RSC Adv 2016; 6: 26352–26360.10.1039/C6RA02604DSearch in Google Scholar

Xu Z, Liu G, Ye H, Jin W, Cui Z. Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration. J Membr Sci 2018; 563: 625–632.10.1016/j.memsci.2018.05.044Search in Google Scholar

Ying L, Wang Y, Chung T, Yi X, Lai J. Polyimides membranes for pervaporation and biofuels separation. Prog Polym Sci 2009; 34: 1135–1160.10.1016/j.progpolymsci.2009.06.001Search in Google Scholar

Zhang QG, Han GL, Hu WW, Zhu AM, Liu QL. Pervaporation of methanol-ethylene glycol mixture over organic-inorganic hybrid membranes. Ind Eng Chem Res 2013a; 52: 7541–7549.10.1021/ie400290zSearch in Google Scholar

Zhang QG, Hu WW, Liu QL, Zhu AM. Chitosan/polyvinylpyrrolidone-silica hybrid membranes for pervaporation separation of methanol/ethylene glycol azeotrope. J Appl Polym Sci 2013b; 1: 3178–3184.10.1002/app.39058Search in Google Scholar

Zhang M, Chen L, Jiang Z, Ma J. Effects of dehydration rate on the yield of ethyl lactate in a pervaporation-assisted esterification process. Ind Eng Chem Res 2015a; 54: 6669–6676.10.1021/acs.iecr.5b01199Search in Google Scholar

Zhang G, Li J, Wang N, Fan H, Zhang R, Zhang G, Ji S. Enhanced flux of polydimethylsiloxane membrane for ethanol permselective pervaporation via incorporation of MIL-53 particles. J Membr Sci 2015b; 492: 322–330.10.1016/j.memsci.2015.05.070Search in Google Scholar

Zhang S, Zou Y, Wei T, Mu C, Liu X, Tong Z. Pervaporation dehydration of binary and ternary mixtures of n-butyl acetate, n-butanol and water using PVA-CS blended membranes. Sep Purif Technol 2017; 173: 314–322.10.1016/j.seppur.2016.09.047Search in Google Scholar

Zhang X, Wang M, Ji CH, Xu XR, Ma XH, Xu ZL. Multilayer assembled CS-PSS/ceramic hollow fiber membranes for pervaporation dehydration. Sep Purif Technol 2018; 203: 84–92.10.1016/j.seppur.2018.04.006Search in Google Scholar

Zhao J, Wang F, Pan F, Zhang M, Yang X, Li P, Wang B. Enhanced pervaporation dehydration performance of ultrathin hybrid membrane by incorporating bioinspired multifunctional modi fi er and TiCl 4 into chitosan. J Membr Sci 2013a; 446: 395–404.10.1016/j.memsci.2013.06.044Search in Google Scholar

Zhao C, Wu H, Li X, Pan F, Li Y, Zhao J, Wang B. High performance composite membranes with a polycarbophil calcium transition layer for pervaporation dehydration of ethanol. J Membr Sci 2013b; 429: 409–417.10.1016/j.memsci.2012.11.063Search in Google Scholar

Zheng PY, Ye CC, Wang XS, Chen KF, An QF, Lee KR, Gao CJ. Poly(sodium vinylsulfonate)/chitosan membranes with sulfonate ionic cross-linking and free sulfate groups: preparation and application in alcohol dehydration. J Membr Sci 2016; 510: 220–228.10.1016/j.memsci.2016.02.060Search in Google Scholar

Zhu J, Tian M, Zhang Y, Zhang H, Liu J. Fabrication of a novel “loose” nanofiltration membrane by facile blending with chitosan-montmorillonite nanosheets for dyes purification. Chem Eng J 2015; 265: 184–193.10.1016/j.cej.2014.12.054Search in Google Scholar

Received: 2019-07-31
Accepted: 2020-01-28
Published Online: 2020-02-24
Published in Print: 2021-11-25

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2019-0051/html
Scroll to top button