Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 22, 2018

Synthesis and applications of carbon nanofibers: a review

  • Juan C. Ruiz-Cornejo , David Sebastián ORCID logo EMAIL logo and Maria J. Lázaro

Abstract

Carbon nanofibers (CNFs) have shown great potential in multiple applications. Their versatility is derived from the possibility of tuning their physical and chemical properties. CNFs can be synthesized using two main methods: the catalytic decomposition of carbon precursors or the electrospinning and carbonization of polymers. The most appropriate method relies on the desired characteristics of the CNFs. Some of their applications include the synthesis of catalysts and catalytic supports, as electrodes for fuel cell devices, in hydrogen storage systems, and in functional nanocomposites. In this review, recent advances in the synthesis and potential applications of CNFs are examined.

Acknowledgments

The authors acknowledge the Ministry of Science, Innovation and University (MICINN) and FEDER for the financial support through the project SOL-CARE (PCIN2015_222) and from the Aragon government to the Fuel Conversion Group. J.C. Ruiz acknowledges the Aragon government for his PhD grant. D. Sebastián also acknowledges MICINN for his Ramón y Cajal contract (RyC-2016-20944).

References

Abeykoon NC, Bonso JS, Ferraris JP. Supercapacitor performance of carbon nanofiber electrodes derived from immiscible PAN/PMMA polymer blends. RSC Adv 2015; 5: 19865–19873.10.1039/C4RA16594BSearch in Google Scholar

Al-Enizi AM, Elzatahry AA, Abdullah AM, Vinu A, Iwai H, Al-Deyab SS. High electrocatalytic performance of nitrogen-doped carbon nanofiber-supported nickel oxide nanocomposite for methanol oxidation in alkaline medium. Appl Surf Sci 2017; 401: 306–313.10.1016/j.apsusc.2017.01.038Search in Google Scholar

Alegre C, Modica E, Lo Vecchio C, Sebastián D, Lázaro MJ, Aricò AS, Baglio V. Carbon nanofibers as advanced Pd catalyst supports for the air electrode of alkaline metal-air batteries. Chempluschem 2015; 80: 1384–1388.10.1002/cplu.201500120Search in Google Scholar PubMed

Alegre C, Modica E, Di Blasi A, Di Blasi O, Busacca C, Ferraro M, Aricò AS, Antonucci V, Baglioa V. NiCo-loaded carbon nanofibers obtained by electrospinning: bifunctional behavior as air electrodes. Renew Energy 2018; 125: 250–259.10.1016/j.renene.2018.02.089Search in Google Scholar

Anderson PE, Rodriguez NM. Growth of graphite nanofibers from the decomposition of CO/H2 over silica-supported iron–nickel particles. J Mater Res 1999; 14: 2912–2921.10.1557/JMR.1999.0389Search in Google Scholar

Aricò AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 2005; 4: 366–377.10.1142/9789814317665_0022Search in Google Scholar

Aricò AS, Baglio V, Antonucci V. Direct methanol fuel cells. UK: Nova Science Publishers, Inc., 2010.Search in Google Scholar

Armandi M, Bonelli B, Areán CO, Garrone E. Role of microporosity in hydrogen adsorption on templated nanoporous carbons. Microporous Mesoporous Mater 2008; 112: 411–418.10.1016/j.micromeso.2007.10.017Search in Google Scholar

Ashok J, Reema S, Anjaneyulu C, Subrahmanyam M, Venugopal A. Methane decomposition catalysts for COx-free hydrogen production. Rev Chem Eng 2010; 26: 29–39.10.1515/REVCE.2010.002Search in Google Scholar

Avraham ES, Fleker O, Benisvy L, Oakes L, Pint CL, Nessim GD. Inducing porosity and growing carbon nanofibers in ferroin perchlorate: an example of morphological transitions in coordination complexes. J Solid State Chem 2017; 253: 21–28.10.1016/j.jssc.2017.05.021Search in Google Scholar

Bai Y, Zhang R, Ye X , Zhu Z, Xie H, Shen B, Cai D, Liu B, Zhang C, Jia Z, Zhang S, Li X, Wei F. Carbon nanotube bundles with tensile strength over 80 GPa. Nat Nanotechnol 2018; 13: 589–595.10.1038/s41565-018-0141-zSearch in Google Scholar PubMed

Baker RTK. Catalytic growth of carbon filaments. Carbon N Y 1989; 27: 315–323.10.1016/0008-6223(89)90062-6Search in Google Scholar

Baker RTK, Harris PS, Thomas RB, Waite RJ. Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J Catal 1973; 30: 86–95.10.1016/0021-9517(73)90055-9Search in Google Scholar

Beck RJ, Zhao Y, Fong H, Menkhaus TJ. Electrospun lignin carbon nanofiber membranes with large pores for highly efficient adsorptive water treatment applications. J Water Process Eng 2017; 16: 240–248.10.1016/j.jwpe.2017.02.002Search in Google Scholar

Bessel CA, Laubernds K, Rodriguez NM, Baker RTK. Graphite nanofibers as an electrode for fuel cell applications. J Phys Chem B 2001; 105: 1121–1122.10.1021/jp003280dSearch in Google Scholar

Bhattacharyya A, Rana S, Parveen S, Fangueiro R, Alagirusamy R, Joshi M. Mechanical and thermal transmission properties of carbon nanofiber-dispersed carbon/phenolic multiscale composites. J Appl Polym Sci 2013; 129: 2383–2392.10.1002/app.38947Search in Google Scholar

Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, Greiner A, Wendorff JH. Nanostructured fibers via electrospinning. Adv Mater 2001; 13: 70–72.10.1002/1521-4095(200101)13:1<70::AID-ADMA70>3.0.CO;2-HSearch in Google Scholar

Busacca C, Di Blasi O, Briguglio N, Ferraro M, Antonucci V, Di Blasi A. Electrochemical performance investigation of electrospun urchin-like V2O3-CNF composite nanostructure for vanadium redox flow battery. Electrochim Acta 2017; 230: 174–180.10.1016/j.electacta.2017.01.193Search in Google Scholar

Calderón J, Rios Ráfales M, Nieto-Monge M, Pardo J, Moliner R, Lázaro M. Oxidation of CO and methanol on Pd-Ni catalysts supported on different chemically-treated carbon nanofibers. Nanomaterials 2016; 6: 187.10.3390/nano6100187Search in Google Scholar

Calderón J, Calvillo L, Lázaro M, Rodríguez J, Pastor E. Effect of the dendrimer generation used in the synthesis of Pt-Ru nanoparticles supported on carbon nanofibers on the catalytic activity towards methanol oxidation. Energies 2017; 10: 159.10.3390/en10020159Search in Google Scholar

Cameán I, García AB, Suelves I, Pinilla JL, Lázaro MJ, Moliner R, Rouzaud J-N. Influence of the inherent metal species on the graphitization of methane-based carbon nanofibers. Carbon N Y 2012; 50: 5387–5394.10.1016/j.carbon.2012.07.024Search in Google Scholar

Carrette L, Friedrich KA, Stimming U. Fuel cells – fundamentals and applications. Fuel Cells 2001; 1: 5–39.10.1002/1615-6854(200105)1:1<5::AID-FUCE5>3.0.CO;2-GSearch in Google Scholar

Chen D, Christensen KO, Ochoa-Fernández E, Yu Z, Tøtdal B, Latorre N, Monzón A, Holmen A. Synthesis of carbon nanofibers: effects of Ni crystal size during methane decomposition. J Catal 2005; 229: 82–96.10.1016/j.jcat.2004.10.017Search in Google Scholar

Cheng S, Shen D, Zhu X, Tian X, Zhou D, Fan L-J. Preparation of nonwoven polyimide/silica hybrid nanofiberous fabrics by combining electrospinning and controlled in situ sol–gel techniques. Eur Polym J 2009; 45: 2767–2778.10.1016/j.eurpolymj.2009.06.021Search in Google Scholar

Choi Y-K, Sugimoto K, Song S-M, Gotoh Y, Ohkoshi Y, Endo M. Mechanical and physical properties of epoxy composites reinforced by vapor grown carbon nanofibers. Carbon N Y 2005; 43: 2199–2208.10.1016/j.carbon.2005.03.036Search in Google Scholar

Dai Y, Zhu G, Shang X, Zhu T, Yang J, Liu J. Electrospun zirconia-embedded carbon nanofibre for high-sensitive determination of methyl parathion. Electrochem Commun 2017; 81: 14–17.10.1016/j.elecom.2017.05.017Search in Google Scholar

Danilov MO, Melezhyk AV, Kolbasov GY. Carbon nanofibers as hydrogen adsorbing materials for power sources. J Power Sources 2008; 176: 320–324.10.1016/j.jpowsour.2007.10.037Search in Google Scholar

De Jong KP, Geus JW. Carbon nanofibers: catalytic synthesis and applications. Catal Rev – Sci Eng 2000; 42: 481–510.10.1081/CR-100101954Search in Google Scholar

Di Blasi A, Busaccaa C, Di Blasia O, Briguglioa N, Squadritoa G, Antonuccia V. Synthesis of flexible electrodes based on electrospun carbon nanofibers with Mn3O4 nanoparticles for vanadium redox flow battery application. Appl Energy 2017; 190: 165–171.10.1016/j.apenergy.2016.12.129Search in Google Scholar

Díaz JA, Martínez-Fernández M, Romero A, Valverde JL. Synthesis of carbon nanofibers supported cobalt catalysts for Fischer–Tropsch process. Fuel 2013; 111: 422–429.10.1016/j.fuel.2013.04.003Search in Google Scholar

Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. J Electrostat 1995; 35: 151–160.10.1109/IAS.1993.299067Search in Google Scholar

Endo M, Kim YA, Ezaka M, Osada K, Yanagisawa T, Hayashi T, Terrones M, Dresselhaus MS. Selective and efficient impregnation of metal nanoparticles on cup-stacked-type carbon nanofibers. Nano Lett 2003; 3: 723–726.10.1021/nl034136hSearch in Google Scholar

Eriksson S. Preparation of catalysts from microemulsions and their applications in heterogeneous catalysis. Appl Catal A Gen 2004; 265: 207–219.10.1016/j.apcata.2004.01.014Search in Google Scholar

Feng L, Xie N, Zhong J. Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Vol. 7, Materials. Multidisciplinary Digital Publishing Institute, 2014: 3919–3945.10.3390/ma7053919Search in Google Scholar PubMed PubMed Central

Figueiredo JL, Bernardo CA, Baker RTK, Hüttinger KJ, editors. Carbon fibers filaments and composites. Dordrecht: Springer Netherlands, 1990.10.1007/978-94-015-6847-0Search in Google Scholar

Fu B, Zhou X, Wang Y. Co3O4 carbon nanofiber mats as negative electrodes for sodium-ion batteries. Mater Lett 2016; 170: 21–24.10.1016/j.matlet.2016.01.132Search in Google Scholar

Garcia AB, Cameán I, Suelves I, Pinilla JL, Lázaro MJ, Palacios JM, Moliner R. The graphitization of carbon nanofibers produced by the catalytic decomposition of natural gas. Carbon N Y 2009; 47: 2563–2570.10.1016/j.carbon.2009.04.047Search in Google Scholar

Garcia AB, Cameán I, Pinilla JL, Suelves I, Lázaro MJ, Moliner R. The graphitization of carbon nanofibers produced by catalytic decomposition of methane: synergetic effect of the inherent Ni and Si. Fuel 2010; 89: 2160–2162.10.1016/j.fuel.2010.03.046Search in Google Scholar

García-Mateos FJ, Cordero-Lanzac T, Berenguer R, Morallón E, Cazorla-Amorós D, Rodríguez-Mirasol J, Cordero T. Lignin-derived Pt supported carbon (submicron) fiber electrocatalysts for alcohol electro-oxidation. Appl Catal B Environ 2017; 211: 18–30.10.1016/j.apcatb.2017.04.008Search in Google Scholar

García-Mateos FJ, Berenguer R, Valero-Romero MJ, Rodríguez-Mirasol J, Cordero T. Phosphorus functionalization for the rapid preparation of highly nanoporous submicron-diameter carbon fibers by electrospinning of lignin solutions. J Mater Chem A 2018; 6: 1219–1333.10.1039/C7TA08788HSearch in Google Scholar

Guo Q, Zhou X, Li X, Chen S, Seema A, Greiner A, Hou H. Supercapacitors based on hybrid carbon nanofibers containing multiwalled carbon nanotubes. J Mater Chem 2009; 19: 2810.10.1039/b820170fSearch in Google Scholar

Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A, Pötschke P. Carbon nanofibers for composite applications. Carbon N Y 2004; 42: 1153–1158.10.1016/j.carbon.2003.12.043Search in Google Scholar

He Z, Maurice J-L, Gohier A, Lee CS, Pribat D, Cojocaru CS. Iron catalysts for the growth of carbon nanofibers: Fe, Fe3 C or both? Chem Mater 2011; 23: 5379–5387.10.1021/cm202315jSearch in Google Scholar

He Y, Wang L, Jia D. Coal/PAN interconnected carbon nanofibers with excellent energy storage performance and electrical conductivity. Electrochim Acta 2016; 194: 239–245.10.1016/j.electacta.2016.01.191Search in Google Scholar

Helveg S, López-Cartes C, Sehested J, Hansen PL, Clausen BS, Rostrup-Nielsen JR, Abild-Pedersen F, Nørskov JK. Atomic-scale imaging of carbon nanofibre growth. Nature 2004; 427: 426–429.10.1038/nature02278Search in Google Scholar

Hoogers G. Fuel cell technology handbook. CRC Press, 2003.10.1201/9781420041552Search in Google Scholar

Hwang JY, Lee SH, Sim KS, Kim JW. Synthesis and hydrogen storage of carbon nanofibers. Synth Met 2002; 126: 81–85.10.1016/S0379-6779(01)00543-4Search in Google Scholar

Hyun Y, Choi J-Y, Park H-K, Lee C-S. Synthesis and electrochemical performance of ruthenium oxide-coated carbon nanofibers as anode materials for lithium secondary batteries. Appl Surf Sci 2016; 388: 274–280.10.1016/j.apsusc.2016.01.095Search in Google Scholar

Inagaki M, Yang Y, Kang F. Carbon nanofibers prepared via electrospinning. Adv Mater 2012; 24: 2547–2566.10.1002/adma.201104940Search in Google Scholar PubMed

Jaworski Z, Zakrzewska B, Pianko-Oprych P. On thermodynamic equilibrium of carbon deposition from gaseous C-H-O mixtures: updating for nanotubes. Rev Chem Eng 2017; 33: 217–235.10.1515/revce-2016-0022Search in Google Scholar

Jeong JH, Kim B-H. Synergistic effects of pitch and poly(methyl methacrylate) on the morphological and capacitive properties of MnO2/carbon nanofiber composites. J Electroanal Chem 2018; 809: 130–135.10.1016/j.jelechem.2017.12.063Search in Google Scholar

Jiao J, Nolan PE, Seraphin S, Cutler AH, Lynch DC. Morphology of carbon nanoclusters prepared by catalytic disproportionation of carbon monoxide. J Electrochem Soc 1996; 143: 932.10.1149/1.1836561Search in Google Scholar

Jiménez V, Ramírez-Lucas A, Sánchez P, Valverde JL, Romero A. Hydrogen storage in different carbon materials: influence of the porosity development by chemical activation. Appl Surf Sci 2012; 258: 2498–2509.10.1016/j.apsusc.2011.10.080Search in Google Scholar

Jordá-Beneyto M, Suárez-García F, Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A. Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon N Y 2007; 45: 293–303.10.1016/j.carbon.2006.09.022Search in Google Scholar

Ju Y-W, Oh G-Y. Behavior of toluene adsorption on activated carbon nanofibers prepared by electrospinning of a polyacrylonitrile-cellulose acetate blending solution. Korean J Chem Eng 2017; 34: 2731–2737.10.1007/s11814-017-0171-5Search in Google Scholar

Ju J, Kang W, Deng N, Li L, Zhao Y, Ma X, Fan L, Cheng B. Preparation and characterization of PVA-based carbon nanofibers with honeycomb-like porous structure via electro-blown spinning method. Microporous Mesoporous Mater 2017; 239: 416–425.10.1016/j.micromeso.2016.10.024Search in Google Scholar

Kaerkitcha N, Chuangchote S, Sagawa T. Control of physical properties of carbon nanofibers obtained from coaxial electrospinning of PMMA and PAN with adjustable inner/outer nozzle-ends. Nanoscale Res Lett 2016; 11: 186.10.1186/s11671-016-1416-7Search in Google Scholar PubMed PubMed Central

Kenzhin RM, Bauman YI, Volodin AM, Mishakov IV, Vedyagin AA. Synthesis of carbon nanofibers by catalytic CVD of chlorobenzene over bulk nickel alloy. Appl Surf Sci 2018; 427: 505–510.10.1016/j.apsusc.2017.08.227Search in Google Scholar

Kim C, Choi Y-O, Lee W-J, Yang K-S. Supercapacitor performances of activated carbon fiber webs prepared by electrospinning of PMDA-ODA poly(amic acid) solutions. Electrochim Acta 2004; 50: 883–887.10.1016/j.electacta.2004.02.072Search in Google Scholar

Kim C, Yang KS, Kojima M, Yoshida K, Kim YJ, Kim YA, Kim YA, Endo M. Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries. Adv Funct Mater 2006; 16: 2393–2397.10.1002/adfm.200500911Search in Google Scholar

Kim H, Lee D, Moon J. Co-electrospun Pd-coated porous carbon nanofibers for hydrogen storage applications. Int J Hydrog Energy 2011; 36: 3566–3573.10.1016/j.ijhydene.2010.12.041Search in Google Scholar

Kim M, Kim Y, Lee KM, Jeong SY, Lee E, Baeck SH, Shim SE. Electrochemical improvement due to alignment of carbon nanofibers fabricated by electrospinning as an electrode for supercapacitor. Carbon N Y 2016; 99: 607–618.10.1016/j.carbon.2015.12.068Search in Google Scholar

Kinoshita K. Carbon: electrochemical and physicochemical properties. New York: Wiley, 1988.Search in Google Scholar

Kubo S, Kadla JF. Lignin-based carbon fibers: effect of synthetic polymer blending on fiber properties. J Polym Environ 2005; 13: 97–105.10.1007/s10924-005-2941-0Search in Google Scholar

Kvande I, Briskeby ST, Tsypkin M, Rønning M, Sunde S, Tunold R, Chen D. On the preparation methods for carbon nanofiber-supported Pt catalysts. Top Catal 2007; 45: 81–85.10.1007/s11244-007-0244-5Search in Google Scholar

Kyotani T, Tsai L, Tomita A. Formation of ultrafine carbon tubes by using an anodic aluminum oxide film as a template. Chem Mater 1995; 7: 1427–1428.10.1021/cm00056a001Search in Google Scholar

Lai C, Zhou Z, Zhang L, Wang X, Zhou Q, Zhao Y, Wang Y, Wu X-F, Zhu Z, Fong H. Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors. J Power Sources 2014; 247: 134–141.10.1016/j.jpowsour.2013.08.082Search in Google Scholar

Lamber R, Jaeger N, Schulz-Ekloff G. Electron microscopy study of the interaction of Ni, Pd and Pt with carbon. Surf Sci 1988; 197: 402–414.10.1016/0039-6028(88)90636-XSearch in Google Scholar

Li P, Li T, Zhou J-H, Sui Z-J, Dai Y-C, Yuan W-K, Chen D. Synthesis of carbon nanofiber/graphite-felt composite as a catalyst. Microporous Mesoporous Mater 2006; 95: 1–7.10.1016/j.micromeso.2006.04.014Search in Google Scholar

Li G, Xie T, Yang S, Jin J, Jiang J. Microwave absorption enhancement of porous carbon fibers compared with carbon nanofibers. J Phys Chem C 2012; 116: 9196–9201.10.1021/jp300050uSearch in Google Scholar

Li M, Carter R, Cohn AP, Pint CL. Interconnected foams of helical carbon nanofibers grown with ultrahigh yield for high capacity sodium ion battery anodes. Carbon N Y 2016a; 107: 109–115.10.1016/j.carbon.2016.05.051Search in Google Scholar

Li M, Li N, Shao W, Zhou C. Synthesis of carbon nanofibers by CVD as a catalyst support material using atomically ordered Ni3C nanoparticles. Carbon N Y 2016b; 40: 445503.10.1088/0957-4484/27/50/505706Search in Google Scholar PubMed

Lianquan G, Changxiang M, Yujie Z, Shuai W. Electrochemical study on hydrogen storage property of CNTs. J Northeast Univ Sci 2004; 25: 427–430.Search in Google Scholar

Lim S, Shimizu A, Yoon S-H, Korai Y, Mochida I. High yield preparation of tubular carbon nanofibers over supported Co–Mo catalysts. Carbon N Y 2004; 42: 1279–1283.10.1016/j.carbon.2004.01.027Search in Google Scholar

Liu Z, Fu D, Liu F, Han G, Liu C, Chang Y, Xiao Y, Li M, Li S. Mesoporous carbon nanofibers with large cage-like pores activated by tin dioxide and their use in supercapacitor and catalyst support. Carbon N Y 2014; 70: 295–307.10.1016/j.carbon.2014.01.011Search in Google Scholar

Lizcano-Valbuena WH, Paganin VA, Gonzalez ER. Methanol electro-oxidation on gas diffusion electrodes prepared with Pt-Ru/C catalysts. Electrochim Acta 2002; 47: 3715–3722.10.1016/S0013-4686(02)00341-9Search in Google Scholar

Lobo LS. Nucleation and growth of carbon nanotubes and nanofibers: mechanism and catalytic geometry control. Carbon N Y 2017; 114: 411–417.10.1016/j.carbon.2016.12.005Search in Google Scholar

Lota G, Fic K, Frackowiak E. Carbon nanotubes and their composites in electrochemical applications. Energy Environ Sci 2011; 4: 1592.10.1039/c0ee00470gSearch in Google Scholar

Ma C, Song Y, Shi J, Zhang D, Zhai X, Zhong M, Guo Q, Liu L. Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor electrodes. Carbon N Y 2013; 51: 290–300.10.1016/j.carbon.2012.08.056Search in Google Scholar

Mao X, Simeon F, Rutledge GC, Hatton TA. Electrospun carbon nanofiber webs with controlled density of states for sensor applications. Adv Mater 2013; 25: 1309–1314.10.1002/adma.201203045Search in Google Scholar PubMed

Martin-Gullon I, Vera J, Conesa JA, González JL, Merino C. Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor. Carbon N Y 2006; 44: 1572–1580.10.1016/j.carbon.2005.12.027Search in Google Scholar

Megelski S, Stephens JS, Bruce Chase D, Rabolt JF. Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 2002; 35: 8456–8466.10.1021/ma020444aSearch in Google Scholar

Moore AL, Cummings AT, Jensen JM, Shi L, Koo JH. Thermal conductivity measurements of nylon 11-carbon nanofiber nanocomposites. J Heat Transfer 2009; 131: 091602.10.1115/1.3139110Search in Google Scholar

Mordkovich VZ. Carbon nanofibers: a new ultrahigh-strength material for chemical technology. Theor Found Chem Eng 2003; 37: 429–438.10.1023/A:1026082323244Search in Google Scholar

Niemann MU, Srinivasan SS, Phani AR, Kumar A, Goswami DY, Stefanakos EK. Nanomaterials for hydrogen storage applications: a review. J Nanomater 2008; 2008: 1–9.10.1155/2008/950967Search in Google Scholar

Nishiyama Y, Tamai Y. Carbon formation on copper-nickel alloys from benzene. J Catal 1974; 33: 98–107.10.1016/0021-9517(74)90249-8Search in Google Scholar

Ngo Q, Yamada T, Suzuki M, Ominami Y, Cassell AM, Li Jun, Meyyappan M, Yang CY. Structural and electrical characterization of carbon nanofibers for interconnect via applications. IEEE Trans Nanotechnol 2007; 6: 688–695.10.1109/TNANO.2007.907400Search in Google Scholar

Nolan PE, Lynch DC, Cutler AH. Carbon deposition and hydrocarbon formation on group VIII metal catalysts. J Phys Chem B 1998; 102: 4165–4175.10.1021/jp980996oSearch in Google Scholar

Ozkan T, Naraghi M, Chasiotis I. Mechanical properties of vapor grown carbon nanofibers. Carbon N Y 2010; 48: 239–244.10.1016/j.carbon.2009.09.011Search in Google Scholar

Pandolfo AG, Hollenkamp AF. Carbon properties and their role in supercapacitors. J Power Sources 2006; 157: 11–27.10.1016/j.jpowsour.2006.02.065Search in Google Scholar

Park SH, Kim C, Yang KS. Preparation of carbonized fiber web from electrospinning of isotropic pitch. Synth Met 2004; 143: 175–179.10.1016/j.synthmet.2003.11.006Search in Google Scholar

Pinilla J, Suelves I, Lázaro M, Moliner R, Palacios J. Activity of NiCuAl catalyst in methane decomposition studied using a thermobalance and the structural changes in the Ni and the deposited carbon. Int J Hydrog Energy 2008; 33: 2515–2524.10.1016/j.ijhydene.2008.02.041Search in Google Scholar

Pinilla JL, Suelves I, Lázaro MJ, Moliner R, Palacios JM. Influence of nickel crystal domain size on the behaviour of Ni and NiCu catalysts for the methane decomposition reaction. Appl Catal A Gen 2009; 363: 199–207.10.1016/j.apcata.2009.05.009Search in Google Scholar

Pinilla JL, Lázaro MJ, Suelves I, Moliner R. Formation of hydrogen and filamentous carbon over a Ni-Cu-Al2O3 catalyst through ethane decomposition. Appl Catal A Gen 2011a; 394: 220–227.10.1016/j.apcata.2011.01.005Search in Google Scholar

Pinilla JL, Utrilla R, Karn RK, Suelves I, Lázaro MJ, Moliner R, García AB, Rouzaud JN. High temperature iron-based catalysts for hydrogen and nanostructured carbon production by methane decomposition. Int J Hydrog Energy 2011b; 36: 7832–7843.10.1016/j.ijhydene.2011.01.184Search in Google Scholar

Pinilla JL, Purón H, Torres D, Suelves I, Millan M. Ni-MoS2 supported on carbon nanofibers as hydrogenation catalysts: effect of support functionalisation. Carbon N Y 2015; 81: 574–586.10.1016/j.carbon.2014.09.092Search in Google Scholar

Ra EJ, Raymundo-Piñero E, Lee YH, Béguin F. High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper. Carbon N Y 2009; 47: 2984–2992.10.1016/j.carbon.2009.06.051Search in Google Scholar

Rahaman MSA, Ismail AF, Mustafa A. A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stab 2007; 92: 1421–1432.10.1016/j.polymdegradstab.2007.03.023Search in Google Scholar

Ramos A, Cameán I, García AB. Graphitization thermal treatment of carbon nanofibers. Carbon N Y 2013; 59: 2–32.10.1016/j.carbon.2013.03.031Search in Google Scholar

Rana S, Alagirusamy R, Joshi M. Effect of carbon nanofiber dispersion on the tensile properties of epoxy nanocomposites. J Compos Mater 2011; 45: 2247–2256.10.1177/0021998311401076Search in Google Scholar

Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 1996; 7: 216–223.10.1088/0957-4484/7/3/009Search in Google Scholar

Rodriguez NM. Review of catalytically grown carbon nanofibers. J Mater Res 1993; 8: 3233–3250.10.1557/JMR.1993.3233Search in Google Scholar

Román-Martínez MC, Cazorla-Amorós D, Linares-Solano A, De Lecea CSM, Yamashita H, Anpo M. Metal-support interaction in Pt/C catalysts. Influence of the support surface chemistry and the metal precursor. Carbon N Y 1995; 33: 3–13.10.1016/0008-6223(94)00096-ISearch in Google Scholar

Ruiz-Rosas R, Bedia J, Lallave M, Loscertales IG, Barrero A, Rodríguez-Mirasol J, Cordero T. The production of submicron diameter carbon fibers by the electrospinning of lignin. Carbon N Y 2010; 48: 696–705.10.1016/j.carbon.2009.10.014Search in Google Scholar

Rzepka M, Lamp P, de la Casa-Lillo MA. Physisorption of hydrogen on microporous carbon and carbon nanotubes. J Phys Chem B 1998; 102: 10894–10898.10.1021/jp9829602Search in Google Scholar

Sabantina L, Rodríguez-Cano M, Klöcker M, García-Mateos F, Ternero-Hidalgo J, Mamun A, Beermann F, Schwakenberg M, Voigt A-L, Rodríguez-Mirasol J, Cordero T, Ehrmann A. Fixing PAN nanofiber mats during stabilization for carbonization and creating novel metal/carbon composites. Polymers (Basel) 2018; 10: 735.10.3390/polym10070735Search in Google Scholar PubMed PubMed Central

Salgado JRC, Antolini E, Gonzalez ER. Structure and activity of carbon-supported Pt–Co electrocatalysts for oxygen reduction. J Phys Chem B 2004; 108: 17767–17774.10.1021/jp0486649Search in Google Scholar

Sebastián D, Suelves I, Lázaro MJ, Moliner R. Carbon nanofibers as electrocatalyst support for fuel cells: effect of hydrogen on their properties in CH4 decomposition. J Power Sources 2009; 192: 51–56.10.1016/j.jpowsour.2008.11.092Search in Google Scholar

Sebastián D, Suelves I, Moliner R, Lázaro MJJ. The effect of the functionalization of carbon nanofibers on their electronic conductivity. Carbon N Y 2010; 48: 4421–4431.10.1016/j.carbon.2010.07.059Search in Google Scholar

Sebastián D, Suelves I, Moliner R, Lázaro MJ. Carbon nanofibers. In: Nanofibers: synthesis, properties, and applications. UK: Nova Science Publishers, Inc., 2012: 1–40.Search in Google Scholar

Sebastián D, Ruiz AG, Suelves I, Moliner R, Lázaro MJ. On the importance of the structure in the electrical conductivity of fishbone carbon nanofibers. J Mater Sci 2013a; 48: 1423–1435.10.1007/s10853-012-6893-1Search in Google Scholar

Sebastián D, Suelves I, Moliner R, Lázaro MJMJ, Stassi A, Baglio V, Aricò AS. Optimizing the synthesis of carbon nanofiber based electrocatalysts for fuel cells. Appl Catal B Environ 2013b; 132–133: 22–27.10.1016/j.apcatb.2012.11.023Search in Google Scholar

Sebastián D, Suelves I, Pastor E, Moliner R, Lázaro MJMJ. The effect of carbon nanofiber properties as support for PtRu nanoparticles on the electrooxidation of alcohols. Appl Catal B Environ 2013c; 132–133: 13–21.10.1016/j.apcatb.2012.11.018Search in Google Scholar

Sebastián D, Lázaro MJJ, Moliner R, Suelves I, Aricò ASS, Baglio V. Oxidized carbon nanofibers supporting PtRu nanoparticles for direct methanol fuel cells. Int J Hydrog Energy 2014; 39: 5414–5423.10.1016/j.ijhydene.2013.12.005Search in Google Scholar

Serp P, Figueiredo JL. Carbon materials for catalysis. USA: John Wiley & Sons, 2009.10.1002/9780470403709Search in Google Scholar

Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis. Appl Catal A Gen 2003; 253: 337–358.10.1002/9780470403709.ch9Search in Google Scholar

Shim WG, Kim C, Lee JW, Yun JJ, Jeong Y Il, Moon H, Yang KS. Adsorption characteristics of benzene on electrospun-derived porous carbon nanofibers. J Appl Polym Sci 2006; 102: 2454–2462.10.1002/app.24554Search in Google Scholar

Song H, Shen W. Carbon nanofibers: synthesis and applications. J Nanosci Nanotechnol 2014; 14: 1799–1810.10.1166/jnn.2014.9005Search in Google Scholar

Sridhar D, Omanovic S, Meunier J-L. Direct growth of carbon nanofiber forest on nickel foam without any external catalyst. Diam Relat Mater 2018; 81: 70–76.10.1016/j.diamond.2017.11.011Search in Google Scholar

Srinivasan S. Fuel cells: from fundamentals to applications. USA: Springer, 2006.Search in Google Scholar

Suelves I, Utrilla R, Torres D, De Llobet S, Pinilla JL, Lázaro MJ, Moliner R. Preparation of polymer composites using nanostructured carbon produced at large scale by catalytic decomposition of methane. Mater Chem Phys 2013; 137: 859–865.10.1016/j.matchemphys.2012.10.026Search in Google Scholar

Talreja N, Verma N, Kumar D. Carbon bead-supported ethylene diamine-functionalized carbon nanofibers: an efficient adsorbent for salicylic acid. CLEAN – Soil, Air, Water 2016; 44: 1461–1470.10.1002/clen.201500722Search in Google Scholar

Tanaka A, Yoon S-H, Mochida I. Formation of fine Fe–Ni particles for the non-supported catalytic synthesis of uniform carbon nanofibers. Carbon N Y 2004a; 42: 1291–1298.10.1016/j.carbon.2004.01.029Search in Google Scholar

Tanaka A, Yoon S-H, Mochida I. Preparation of highly crystalline nanofibers on Fe and Fe–Ni catalysts with a variety of graphene plane alignments. Carbon N Y 2004b; 42: 591–597.10.1016/j.carbon.2003.12.067Search in Google Scholar

Toebes ML, Bitter JH, van Dillen AJ, de Jong KP. Impact of the structure and reactivity of nickel particles on the catalytic growth of carbon nanofibers. Catal Today 2002; 76: 33–42.10.1016/S0920-5861(02)00209-2Search in Google Scholar

Torres D, De Llobet S, Pinilla JL, Lázaro MJ, Suelves I, Moliner R. Hydrogen production by catalytic decomposition of methane using a Fe-based catalyst in a fluidized bed reactor. J Nat Gas Chem 2012; 21: 367–373.10.1016/S1003-9953(11)60378-2Search in Google Scholar

Torres D, Pinilla JL, Lázaro MJ, Moliner R, Suelves I. Hydrogen and multiwall carbon nanotubes production by catalytic decomposition of methane: thermogravimetric analysis and scaling-up of Fe-Mo catalysts. Int J Hydrog Energy 2014; 39: 3698–3709.10.1016/j.ijhydene.2013.12.127Search in Google Scholar

Tsuji M, Kubokawa M, Yano R, Miyamae N, Tsuji T, Jun M-S, Hong S, Lim S, Yoon S-H, Mochida I. Fast preparation of PtRu catalysts supported on carbon nanofibers by the microwave-polyol method and their application to fuel cells. Langmuir 2007; 23: 387–390.10.1021/la062223uSearch in Google Scholar

Van Dam HE, Van Bekkum H. Preparation of platinum on activated carbon. J Catal 1991; 131: 335–349.10.1016/0021-9517(91)90269-ASearch in Google Scholar

Vera-Agullo J, Varela-Rizo H, Conesa JA, Almansa C, Merino C, Martin-Gullon I. Evidence for growth mechanism and helix-spiral cone structure of stacked-cup carbon nanofibers. Carbon N Y 2007; 45: 2751–2758.10.1016/j.carbon.2007.09.040Search in Google Scholar

Wang Y, Zheng M, Lu H, Feng S, Ji G, Cao J. Template synthesis of carbon nanofibers containing linear mesocage arrays. Nanoscale Res Lett 2010; 5: 913–916.10.1007/s11671-010-9562-9Search in Google Scholar PubMed PubMed Central

Wang T, Wang H, Chi X, Li R, Wang J. Synthesis and microwave absorption properties of Fe–C nanofibers by electrospinning with disperse Fe nanoparticles parceled by carbon. Carbon N Y 2014; 74: 312–318.10.1016/j.carbon.2014.03.037Search in Google Scholar

Wei G, Fan X, Liu J, Yan C. Investigation of the electrospun carbon web as the catalyst layer for vanadium redox flow battery. J Power Sources 2014; 270: 634–645.10.1016/j.jpowsour.2014.07.161Search in Google Scholar

Xing Y, Fang B, Bonakdarpour A, Zhang S, Wilkinson DP. Facile fabrication of mesoporous carbon nanofibers with unique hierarchical nanoarchitecture for electrochemical hydrogen storage. Int J Hydrog Energy 2014; 39: 7859–7867.10.1016/j.ijhydene.2014.03.106Search in Google Scholar

Xu B, Wu F, Chen R, Cao G, Chen S, Yang Y. Mesoporous activated carbon fiber as electrode material for high-performance electrochemical double layer capacitors with ionic liquid electrolyte. J Power Sources 2010; 195: 2118–2124.10.1016/j.jpowsour.2009.09.077Search in Google Scholar

Yang C-M, Kim B-H. Highly conductive pitch-based carbon nanofiber/MnO2 composites for high-capacitance supercapacitors. J Alloys Compd 2018; 749: 441–447.10.1016/j.jallcom.2018.03.305Search in Google Scholar

Yang KS, Edie DD, Lim DY, Kim YM, Choi YO. Preparation of carbon fiber web from electrostatic spinning of PMDA-ODA poly(amic acid) solution. Carbon N Y 2003; 41: 2039–2046.10.1016/S0008-6223(03)00174-XSearch in Google Scholar

Yang Y, Centrone A, Chen L, Simeon F, Alan Hatton T, Rutledge GC. Highly porous electrospun polyvinylidene fluoride (PVDF)-based carbon fiber. Carbon N Y 2011; 49: 3395–3403.10.1016/j.carbon.2011.04.015Search in Google Scholar

Yang KS, Kim B-H, Yoon S-H. Pitch based carbon fibers for automotive body and electrodes. Carbon Lett 2014; 15: 162–170.10.5714/CL.2014.15.3.162Search in Google Scholar

Yu Z. Effect of support and reactant on the yield and structure of carbon growth by chemical vapour deposition. J Phys Chem B 2005; 109: 6096–6102.10.1021/jp0449760Search in Google Scholar PubMed

Yu Z, Borg Ø, Chen D, Enger BC, Frøseth V, Rytter E, Wigum H, Holmen A. Carbon nanofiber supported cobalt catalysts for Fischer–Tropsch synthesis with high activity and selectivity. Catal Lett 2006; 109: 43–47.10.1007/s10562-006-0054-6Search in Google Scholar

Yu B, Zhang Q, Hou L, Wang S, Song M, He Y, Huang H, Zou J. Temperature-dependent chemical state of the nickel catalyst for the growth of carbon nanofibers. Carbon N Y 2016a; 96: 904–910.10.1016/j.carbon.2015.10.048Search in Google Scholar

Yu F, Zhang Y, Yu L, Cai W, Yuan L, Liu J, Liu M. All-solid-state direct carbon fuel cells with thin yttrium-stabilized-zirconia electrolyte supported on nickel and iron bimetal-based anodes. Int J Hydrog Energy 2016b; 41: 9048–9058.10.1016/j.ijhydene.2016.04.063Search in Google Scholar

Yu X, Tang Z, Sun D, Ouyang L, Zhu M. Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications. Vol. 88, Pergamon: Progress in Materials Science, 2017: 1–48.10.1016/j.pmatsci.2017.03.001Search in Google Scholar

Yuan F, Ryu H. The synthesis, characterization, and performance of carbon nanotubes and carbon nanofibres with controlled size and morphology as a catalyst support material for a polymer electrolyte membrane fuel cell. Nanotechnology 2004; 15: S596–602.10.1088/0957-4484/15/10/017Search in Google Scholar

Yuan Z, Cheng X, Zhong L, Wu R, Zheng Y. Preparation, characterization and performance of an electrospun carbon nanofiber mat applied in hexavalent chromium removal from aqueous solution. J Environ Sci 2018 (in press).10.1016/j.jes.2018.06.016Search in Google Scholar PubMed

Yürüm Y, Taralp A, Veziroglu TN. Storage of hydrogen in nanostructured carbon materials. Vol. 34, Pergamon: International Journal of Hydrogen Energy, 2009: 3784–3798.10.1016/j.ijhydene.2009.03.001Search in Google Scholar

Zainoodin AM, Kamarudin SK, Masdar MS, Daud WRW, Mohamad AB, Sahari J. High power direct methanol fuel cell with a porous carbon nanofiber anode layer. Appl Energy 2014; 113: 946–954.10.1016/j.apenergy.2013.07.066Search in Google Scholar

Zhang R, Zhang Y, Zhang Q, Xie H, Qian W, Wei F. Growth of half-meter long carbon nanotubes based on Schulz–Flory distribution. ACS Nano 2013; 7: 6156–6161.10.1021/nn401995zSearch in Google Scholar PubMed

Zhang L, Aboagye A, Kelkar A, Lai C, Fong H. A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci 2014; 49: 463–480.10.1007/s10853-013-7705-ySearch in Google Scholar

Zhang Y, Ou H, Liu H, Ke Y, Zhang W, Liao G, Wang D. Polyimide-based carbon nanofibers: a versatile adsorbent for highly efficient removals of chlorophenols, dyes and antibiotics. Colloids Surf A Physicochem Eng Asp 2018; 537: 92–101.10.1016/j.colsurfa.2017.10.014Search in Google Scholar

Zheng G-B, Kouda K, Sano H, Uchiyama Y, Shi Y-F, Quan H-J. A model for the structure and growth of carbon nanofibers synthesized by the CVD method using nickel as a catalyst. Carbon N Y 2004; 42: 635–640.10.1016/j.carbon.2003.12.077Search in Google Scholar

Zheng M, Ji G, Wang Y, Cao J, Feng S, Liao L, Du Q, Zhang L, Ling Z, Liu J, Yu T, Cao J, Tao J. A new restriction effect of hard templates for the shrinkage of mesoporous polymer during carbonization. Chem Commun 2009; 5033–5035.10.1039/b910128dSearch in Google Scholar PubMed

Zhou G, Xiong T, Jiang S, Jian S, Zhou Z, Hou H. Flexible titanium carbide–carbon nanofibers with high modulus and high conductivity by electrospinning. Mater Lett 2016a; 165: 91–94.10.1016/j.matlet.2015.11.119Search in Google Scholar

Zhou Y, He J, Wang H, Qi K, Ding B, Cui S. Carbon nanofiber yarns fabricated from co-electrospun nanofibers. Mater Des 2016b; 95: 591–598.10.1016/j.matdes.2016.01.132Search in Google Scholar

Zhu H, Li X, Ci L, Xu C, Wu D, Mao Z. Hydrogen storage in heat-treated carbon nanofibers prepared by the vertical floating catalyst method. Mater Chem Phys 2003; 78: 670–675.10.1016/S0254-0584(02)00233-XSearch in Google Scholar

Zhu Y, Zhang JC, Zhai J, Zheng YM, Feng L, Jiang L. Multifunctional carbon nanofibers with conductive, magnetic and superhydrophobic properties. ChemPhysChem 2006; 7: 336–341.10.1002/cphc.200500407Search in Google Scholar PubMed

Received: 2018-04-20
Accepted: 2018-09-25
Published Online: 2018-12-22
Published in Print: 2020-05-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2018-0021/html
Scroll to top button