Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 22, 2019

Effects of structure and processing on the surface roughness of extruded co-continuous poly(ethylene) oxide/ethylene-vinyl acetate blends

  • Molin Guo , Hao Chen and João M. Maia ORCID logo EMAIL logo

Abstract

Surface roughness and sharkskin of extruded polymers, including blends are affected by the morphology and processing conditions. In this study, different effects on the roughness of the polymer blend extrudates were investigated. Co-continuous poly(ethylene) oxide/ethylene-vinyl acetate (PEO/EVA) blends with three different molecular weight (Mw) PEOs were compounded successfully. It was found that the better co-continuity of the structure and smoother surface were achieved for lower Mw PEO/EVA blend because of more effective stress transfer in the PEO phase. The effect of processing temperature was also studied with decreasing processing temperature reducing the surface roughness of the high Mw PEO/EVA blend, which was also achieved as a result of improved co-continuous morphology by adjusting the viscosity and elasticity ratio with shifting temperatures.

Acknowledgments

The authors acknowledge Dow Chemical and Dupont for providing PEO and EVA samples.

  1. Conflict of interest statement: The authors declare to have no conflict of interests.

References

[1] Petrie CJS, Denn MM. AIChE J. 1976, 22, 209–236.10.1002/aic.690220202Search in Google Scholar

[2] Denn MM. Annu. Rev. Fluid Mech. 1990, 22, 13–32.10.1146/annurev.fl.22.010190.000305Search in Google Scholar

[3] Larson RG. Rheol. Acta. 1992, 31, 213–263.10.1007/BF00366504Search in Google Scholar

[4] Tordella JP. In Rheology, Eirich FR, Ed., Academic Press: New York, 1969, p. 57–92.10.1016/B978-1-4832-2942-3.50008-9Search in Google Scholar

[5] Wang S-Q. Molecular Transitions and Dynamics at Polymer/Wall Interfaces: Origins of Flow Instabilities and Wall Slip, Springer: Berlin, 1999, p. 227–275.10.1007/3-540-69711-X_6Search in Google Scholar

[6] Benbow JJ, Lamb P. Polym. Eng. Sci. 1963, 3, 7–17.10.1002/pen.760030104Search in Google Scholar

[7] Moynihan RH, Baird DG, Ramanathan RJ. J. Nonnewton. Fluid Mech. 1990, 36, 255–263.10.1016/0377-0257(90)85012-NSearch in Google Scholar

[8] Cogswell FN. J. Nonnewton. Fluid Mech. 1977, 2, 37–47.10.1016/0377-0257(77)80031-1Search in Google Scholar

[9] Beaufils P, Vergnes B, Agassant JF. Int. Polym. Process. 1989, 4, 78–84.10.3139/217.890078Search in Google Scholar

[10] Kissi NE, Piau JM. J. Rheol. (N. Y. N. Y.) 1994, 38, 1447–1463.10.1122/1.550552Search in Google Scholar

[11] Rutgers R, Mackley M. J. Rheol. (N. Y. N. Y.) 2000, 44, 1319–1334.10.1122/1.1319176Search in Google Scholar

[12] Ramamurthy AV. J. Rheol. (N. Y. N. Y.) 1986, 30, 337–357.10.1122/1.549852Search in Google Scholar

[13] Tremblay B. J. Rheol. (N. Y. N. Y.) 1991, 35, 985–998.10.1122/1.550177Search in Google Scholar

[14] Stewart CW. J. Rheol. (N. Y. N. Y.) 1993, 37, 499–513.10.1122/1.550456Search in Google Scholar

[15] Piau J-M, Kissi NE, Toussaint F, Mezghani A. Rheol. Acta 1995, 34, 40–57.10.1007/BF00396053Search in Google Scholar

[16] Hatzikiriakos SG, Dealy JM. Int. Polym. Process. 1993, 8, 36–43.10.3139/217.930036Search in Google Scholar

[17] Burghelea TI, Griess HJ, Münstedt H. J. Nonnewton. Fluid Mech. 2010, 165, 1093–1104.10.1016/j.jnnfm.2010.05.007Search in Google Scholar

[18] Miller E, Lee SJ, Rothstein JP. Rheol. Acta 2006, 45, 943–950.10.1007/s00397-006-0086-2Search in Google Scholar

[19] Krupa I, Luyt A. Polymer (Guildf) 2001, 42, 7285–7289.10.1016/S0032-3861(01)00172-0Search in Google Scholar

[20] Pötschke P, Paul DR, Po P. J. Macromol. Sci. Õ Part C-Polym. Rev. 2003, 43, 87–141.10.1081/MC-120018022Search in Google Scholar

[21] Veenstra H, Verkooijen PCJ, van Lent BJJ, van Dam J, de Boer AP, Nijhof APH. Polymer (Guildf) 2000, 41, 1817–1826.10.1016/S0032-3861(99)00337-7Search in Google Scholar

[22] Chen J, Cui X, Zhu Y, Jiang W, Sui K. Carbon N.Y. 2017, 114, 441–448.10.1016/j.carbon.2016.12.048Search in Google Scholar

[23] Bai L, Sharma R, Cheng X, Macosko CW. Langmuir 2018, 34, 1073–1083.10.1021/acs.langmuir.7b03085Search in Google Scholar

[24] Cao J-P, Zhao X, Zhao J, Zha J-W, Hu G-H, Dang Z-M. ACS Appl. Mater. Interfaces 2013, 5, 6915–6924.10.1021/am401703mSearch in Google Scholar

[25] Polios IS, Soliman M, Lee C, Gido SP, Schmidt-Rohr K, Winter HH. Macromolecules 1997, 30, 4470–4480.10.1021/ma9701292Search in Google Scholar

[26] Veenstra H, Hoogvliet RM, Norder B, De Boer AP. J. Polym. Sci. Part B Polym. Phys. 1998, 36, 1795–1804.10.1002/(SICI)1099-0488(199808)36:11<1795::AID-POLB1>3.0.CO;2-QSearch in Google Scholar

[27] Veenstra H, Van Dam J, de Boer AP. Polymer (Guildf) 1999, 40, 1119–1130.10.1016/S0032-3861(98)00342-5Search in Google Scholar

[28] Utracki LA. J. Rheol. (N. Y. N. Y.) 1991, 35, 1615–1637.10.1122/1.550248Search in Google Scholar

[29] Steinmann S, Gronski W, Friedrich C. Polymer (Guildf) 2001, 42, 6619–6629.10.1016/S0032-3861(01)00100-8Search in Google Scholar

[30] Willemse RC, de Boer AP, van Dam J, Gotsis AD. Polymer (Guildf) 1999, 40, 827–834.10.1016/S0032-3861(98)00307-3Search in Google Scholar

[31] Willemse RC, de Boer AP, van Dam J, Gotsis AD. Polymer (Guildf) 1998, 39, 5879–5887.10.1016/S0032-3861(97)10200-2Search in Google Scholar

[32] Grace HP. Chem. Eng. Commun. 1982, 14, 225–277.10.1080/00986448208911047Search in Google Scholar

[33] Mitchell CA, Bahr JL, Arepalli S, Tour JM, Krishnamoorti R. Macromolecules 2002, 35, 8825–8830.10.1021/ma020890ySearch in Google Scholar

[34] Larson RG. The Structure and Rheology of Complex Fluids (Topics in Chemical Engineering), Oxford University Press: New York, 1999, Vol. 86, p. 108.Search in Google Scholar

[35] Maia JM, Covas JA, Nóbrega JM, Dias TF, Alves FE. Fluid Mech. 1999, 80, 183–197.10.1016/S0377-0257(98)00086-XSearch in Google Scholar

[36] Barroso VC, Covas JA, Maia JM. Rheol. Acta. 2002, 41, 154–161.10.1007/s003970200014Search in Google Scholar

[37] Barroso VC, Andrade RJ, Maia JM. J. Rheol. (N. Y. N. Y.) 2010, 54, 605–618.10.1122/1.3378791Search in Google Scholar

[38] Andrade RJ, Harris P, Maia JM. J. Rheol. (N. Y. N. Y.) 2014, 58, 869–890.10.1122/1.4875349Search in Google Scholar

[39] Barroso VC, Maia JM. Rheol. Acta 2002, 41, 257–264.10.1007/s003970100208Search in Google Scholar

[40] Barroso VC, Ribeiro SP, Maia JM. Rheol. Acta 2003, 42, 345–354.10.1007/s00397-002-0284-5Search in Google Scholar

[41] Münstedt H, Schwarzl FR. Deformation and Flow of Polymeric Materials, Springer: Berlin, 2014, p. 407.10.1007/978-3-642-55409-4Search in Google Scholar

[42] Ruymbeke E, van Muliawan EB, Hatzikiriakos SG, Watanabe T, Hirao A. J. Rheol. 2010, 54, 643.10.1122/1.3368724Search in Google Scholar

[43] Liu G, Sun H, Rangou S, Ntetsikas K, Avgeropoulos A, Wang SQ. J. Rheol. (N. Y. N. Y.) 2013, 57, 89–104.10.1122/1.4763568Search in Google Scholar

[44] Barroso VC, Maia JM. Polym. Eng. Sci. 2005, 45, 984–997.10.1002/pen.20356Search in Google Scholar

[45] Barroso VC, Maia JM. J. Nonnewton. Fluid Mech. 2005, 126, 93–103.10.1016/j.jnnfm.2004.03.012Search in Google Scholar

[46] Andrade RJ, Maia JM. J. Rheol. (N. Y. N. Y.) 2011, 155, 925–937.10.1122/1.3596210Search in Google Scholar

[47] Jameie OA, Razavi AMK, Rafeie OTA. J. Polym. Res. 2017, 24, 21.10.1007/s10965-017-1183-xSearch in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/polyeng-2019-0238).


Received: 2019-07-18
Accepted: 2019-10-10
Published Online: 2019-11-22
Published in Print: 2020-10-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/polyeng-2019-0238/html
Scroll to top button