Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 30, 2020

Fabrication and evaluation of polylactic acid/pectin composite scaffold via freeze extraction for tissue engineering

  • Mohd Syahir Anwar Hamzah , Saiful Izwan Abd Razak EMAIL logo , Mohammed Rafiq Abdul Kadir , Siti Pauliena Mohd Bohari , Nadirul Hasraf Mat Nayan and Joseph Sahaya Thangaraj Anand

Abstract

This work reports the fabrication and characterizations of porous scaffold made up of polylactic acid (PLA) with the inclusion of pectin (1, 3, 5, 7, 9, 11 wt%) for potential tissue engineering material. The composite scaffold was prepared using a facile method of freeze extraction. Based on the physical evaluations, the scaffold was suggested to be optimum at 5 wt% of pectin loading. Water contact angle of the scaffold was significantly reduced to 46.5o with the inclusion of 5 wt% of pectin. Morphological and topographic of the PLA scaffold revealed that the pectin induced more porous structure and its surface became rougher which was suitable for cell attachment and proliferation. In vitro studies of the PLA/pectin composite scaffold using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidelt (MTT) assay revealed good biocompatibility whereas Live-Dead kit assay resulted in 91% cell viability after 7 days of incubation.


Corresponding author: Saiful Izwan Abd Razak, Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, 81300, Skudai, Johor, Malaysia; and BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, 81300, Skudai, Johor, Malaysia, E-mail:

Award Identifier / Grant number: 03G83, 04G53

  1. Research funding: Financial support from the Universiti Teknologi Malaysia grant number 04G53 and 03G83 are gratefully acknowledged.

References

1. Grémare A., Guduric V., Bareille R., Heroguez V., Latour S., L'heureux N., Fricain J. C., Catros S., Le Nihouannen D. J. Biomed. Mater. Res. Part A. 2018, 106, 887–894. https://doi.org/10.1002/jbm.a.36289.Search in Google Scholar

2. Moffat K. L., Goon K., Moutos F. T., Estes B. T., Oswald S. J., Zhao X., Guilak F. Macromol. Biosci. 2018, 18, 1800140. https://doi.org/10.1002/mabi.201800140.Search in Google Scholar

3. Zhang C., Zhai T., Turng L. S. J. Polym. Eng. 2018, 38, 409–417. https://doi.org/10.1515/polyeng-2017-0194.Search in Google Scholar

4. Afshar H. A., Ghaee A. Carbohydr. Polym. 2016, 151, 1120–1131. https://doi.org/10.1016/S0928-4931(01)00338-1.Search in Google Scholar

5. Ghorbani F., Moradi L., Shadmehr M. B., Bonakdar S., Droodinia A., Safshekan F. Mater. Sci. Eng.: C. 2017, 81, 74–83. https://doi.org/10.1016/j.msec.2017.04.150.Search in Google Scholar

6. Da L., Gong M., Chen A., Zhang Y., Huang Y., Guo Z., Li S., Li-Ling J., Zhang L., Xie H. Acta Biomater. 2017, 59, 45–57. https://doi.org/10.1016/j.actbio.2017.05.041.Search in Google Scholar

7. Lin H. Y., Chen H. H., Chang S. H., Ni T. S. J. Biomater. Sci. Polym. Ed. 2013, 24, 470–484. https://doi.org/10.1080/09205063.2012.693047.Search in Google Scholar

8. Wang J., Nor Hidayah Z., Razak S. I. A., Kadir M. R., Nayan N. H., Li Y., Amin K. A. Compos. Interfac. 2019, 26, 465–478. https://doi.org/10.1080/09276440.2018.1508266.Search in Google Scholar

9. Thauvin C., Schwarz B., Delie F., Allémann E. Int. J. Pharm. 2018, 548, 771–777. https://doi.org/10.1016/j.ijpharm.2017.11.001.Search in Google Scholar

10. Abudula T., Saeed U., Memic A., Gauthaman K., Hussain M. A., Al-Turaif H. J. Polym. Res. 2019, 26, 110. https://doi.org/10.1007/s10965-019-1772-y.Search in Google Scholar

11. Wang L., Wang D., Zhou Y., Zhang Y., Li Q., Shen C. Polym. Adv. Technol. 2019, 30, 2539–2548. https://doi.org/10.1002/pat.4701.Search in Google Scholar

12. Suzuki A., Nagata F., Inagaki M., Kato K. Trans. Mater. Res. Soc. Jpn. 2018, 43, 271–274. https://doi.org/10.14723/tmrsj.43.271.Search in Google Scholar

13. Bhaskar B., Owen R., Bahmaee H., Wally Z., Sreenivasa Rao P., Reilly G. C. J. Biomed. Mater. Res. Part A. 2018, 106, 1334–1340. https://doi.org/10.1002/jbm.a.36336.Search in Google Scholar

14. Teixeira B. N., Aprile P., Mendonça R. H., Kelly D. J., Thiré R. M. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2019, 107, 37–49. https://doi.org/10.1002/jbm.b.34093.Search in Google Scholar

15. Budyanto L., Goh Y. Q., Ooi C. P. J. Mater. Sci.: Mater. Med. 2009, 20, 105–111. https://doi.org/10.1007/s10856-008-3545-8.Search in Google Scholar

16. Ghaleh H., Abbasi F., Alizadeh M., Khoshfetrat A. B. Mater. Sci. Eng.: C. 2015, 49, 807–815. https://doi.org/10.1016/j.msec.2015.01.071.Search in Google Scholar

17. Sarasam A. R., Samli A. I., Hess L., Ihnat M. A., Madihally S. V. Macromol. Biosci. 2007, 7, 1160–1167. https://doi.org/10.1002/mabi.2007000015.Search in Google Scholar

18. Ho M. M. H., Kuo P. Y., Hsieh H. J., Hsien T. Y., Hou L. T., Lai J. Y., Wang D. M. Biomaterials. 2004, 25, 129–138. https://doi.org/10.1016/S0142-9612(03)00483-6.Search in Google Scholar

19. Zhu H., Ji J., Shen J. Macromol. Rapid Commun. 2002, 23, 819–823. https://doi.org/10.1002/1521-3927(20021001)23:14<819::AID-MARC819<3.0.CO;2-9.10.1002/1521-3927(20021001)23:14<819::AID-MARC819>3.0.CO;2-9Search in Google Scholar

20. Dong W., Zeng Q., Yin X., Liu H., Lv J., Zhu L. Polym. Compos. 2018, 39, E416–E425. https://doi.org/10.1002/pc.24500.Search in Google Scholar

21. Ye Z., Xu W., Shen R., Yan Y. J. Biomater. Appl. 2019; 34, 763–777 https://doi.org/10.1177/0885328219873561.Search in Google Scholar

22. El-Kady A. M., Saad E. A., El-Hady B. M., Farag M. M. Ceram. Int. 2010, 36, 995–1009. https://doi.org/10.1016/j.ceramint.2009.11.012.Search in Google Scholar

23. Verrier S., Blaker J. J., Maquet V., Hench L. L., Boccaccini A. R. Biomaterials. 2004, 25, 3013–3021. https://doi.org/10.1016/j.biomaterials.2003.09.081.Search in Google Scholar

24. Adeli H., Zein S. H. S., Tan S. H., Akil H. M., Ahmad A. L. Curr. Nanosci. 2011, 7, 323–332. https://doi.org/10.2174/157341311795542552.Search in Google Scholar

25. Eryildiz M., Altan M. Polym. Compos. 2019; 41, 757–767. https://doi.org/10.1002/pc.25406.Search in Google Scholar

26. Ma L., Gao C., Mao Z., Zhou J., Shen J., Hu X., Han C. Biomaterials. 2003, 24, 4833–4841. https://doi.org/10.1016/S0142-9612(03)00374-0.Search in Google Scholar

27. Willats W. G., McCartney L., Mackie W., Knox J. P. Plant Mol. Biol. 2001, 47, 9–27. https://doi.org/10.1023/A:1010662911148.10.1023/A:1010662911148Search in Google Scholar

28. Sadeghi M. J. Biomater. Nanobiotechnol. 2011, 2, 36–40. https://doi.org/10.4236/jbnb.2011.21005.Search in Google Scholar

29. Ninan N., Muthiah M., Park I. K., Kalarikkal N., Elain A., Wong T. W., Thomas S., Grohens Y. Mater. Lett. 2014, 132, 34–37. https://doi.org/10.1016/j.matlet.2014.06.056.Search in Google Scholar

30. Ninan N., Muthiah M., Park I. K., Elain A., Thomas S., Grohens Y. Carbohydr. Polym. 2013, 98, 877–885. https://doi.org/10.1016/j.carbpol.2013.06.067.Search in Google Scholar

31. Munarin F., Guerreiro S. G., Grellier M. A., Tanzi M. C., Barbosa M. A., Petrini P., Granja P. L. Biomacromolecules. 2011, 12, 568–577 https://doi.org/10.1021/bm101110x.Search in Google Scholar

32. Archana D., Upadhyay L., Tewari R. P., Dutta J., Huang Y. B., Dutta P. K. Indian J. Biotechnol. 2013, 12, 475–482. Available from: http://nopr.niscair.res.in/handle/123456789/26232.Search in Google Scholar

33. Nanda P. K., Swain P., Nayak S. K., Mishra S. S., Jayasankar P., Sahoo S. K. Adv. Anim. Vet. Sci. 2014, 2, 177–182. https://doi.org/10.14737/journal.aavs/2014/2.3.177.182.10.14737/journal.aavs/2014/2.3.177.182Search in Google Scholar

34. Razak S. I. A., Dahli F. N., Wahab I. F., Abdul Kadir M. R., Muhamad I. I., Yusof A. H., Adeli H. Soft Mater. 2016, 14, 78–86. https://doi.org/10.1080/1539445X.2016.1149078.Search in Google Scholar

35. Afshar H. A., Ghaee A. Carbohydr. Polym. 2016, 151, 1120–1131. https://doi.org/10.1016/j.carbpol.2016.06.063.Search in Google Scholar

36. Liu L., Won Y. J., Cooke P. H., Coffin D. R., Fishman M. L., Hicks K. B., Ma P. X. Biomaterials. 2004, 25, 3201–3210. https://doi.org/10.1016/j.biomaterials.2003.10.036.Search in Google Scholar

37. Sangsen Y., Benjakul S., Oungbho K. 4th Biomedical Engineering International Conference. 2011, 273–278. https://doi.org/10.1109/BMEiCon.2012.6172069.Search in Google Scholar

38. Loh Q. L., Choong C. Tissue Eng. Part B: Rev. 2013, 19, 485–502. https://doi.org/10.1089/ten.teb.2012.0437.Search in Google Scholar

39. Lasprilla A. J., Martinez G. A., Hoss B. Chem. Eng. 2011, 24, 985–990. Available from: https://folk.ntnu.no/skoge/prost/proceedings/pres2011-and-icheap10/ICheaP10/310Lasprilla.pdf.Search in Google Scholar

40. Jackson C. L., Dreaden T. M., Theobald L. K., Tran N. M., Beal T. L., Eid M., Gao M. Y., Shirley R. B., Stoffel M. T., Kumar M. V., Mohnen D. Glycobiology. 2007, 17, 805–819. https://doi.org/10.1093/glycob/cwm054.Search in Google Scholar

41. Gaona L. A., Ribelles J. G., Perilla J. E., Lebourg M. Polym. Degrad. Stabil. 2012, 97, 1621–1632. https://doi.org/10.1016/j.polymdegradstab.2012.06.031.Search in Google Scholar

42. Bohari S. P., Hukins D. W., Grover L. M. Bio-medi. Mater Eng. 2011, 21, 159–170. https://doi.org/10.3233/BME-2011-0665.Search in Google Scholar

Received: 2019-12-12
Accepted: 2020-03-15
Published Online: 2020-04-30
Published in Print: 2020-05-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/polyeng-2019-0377/html
Scroll to top button