Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 8, 2020

Effects of chain polarity of hindered phenol on the damping properties of polymer-based hybrid materials: insights into the molecular mechanism

  • Qiaoman Hu , Junhui Wang , Kangming Xu EMAIL logo , Hongdi Zhou , Yue Huang and Jinlei Chen

Abstract

For hindered phenol (HP)/polymer-based hybrid damping materials, the damping properties are greatly affected by the structure variation of HPs. However, the unclear relationship between them limits the exploitation of such promising materials. Therefore, three HPs with different chain polarity were synthesized to explore the relationship in this paper. The structures of the HPs were firstly confirmed by Nuclear Magnetic Resonance Spectrum, Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Diffraction (XRD). For further prepared HP/polyurethane hybrids, FT-IR and XRD were also adopted to confirm the hydrogen bonding interactions and micromorphologies. And, Molecular dynamics simulation was further used to characterize the effects of polarity variation on the hydrogen bonding interactions and chain packing of the hybrids in a quantitative manner. Then, combined with dynamic mechanical analysis, the relationship between the chain polarity variation of the hindered phenols and the damping properties was established.


Corresponding author: Kangming Xu, College of Materials Science and Engineering, Chongqing University of Arts and Sciences, Yongchuan, Chongqing402160, PR China, E-mail:

Award Identifier / Grant number: 51703016

Funding source: Scientific Research Foundation of Chongqing University of Arts and Sciences

Award Identifier / Grant number: R2015CH08

Award Identifier / Grant number: R2015CH11

  1. Research funding: Support from the National Natural Science Foundation of China (51703016) and the Scientific Research Foundation of Chongqing University of Arts and Sciences (R2015CH08, R2015CH11) is gratefully acknowledged.

References

1. Lakes R. S., Lee T., Bersie A., Wang Y. Nature. 2001, 410, 565. https://doi.org/10.1038/35069035.10.1038/35069035Search in Google Scholar PubMed

2. Adams J. D., Erickson B. W., Grossenbacher J., Brugger J., Nievergelt A., Fantner G. E. Nat. Nanotechnol. 2016, 11, 147. https://doi.org/10.1038/NNANO.2015.254.10.1038/nnano.2015.254Search in Google Scholar PubMed

3. Eichler A., Moser J., Chaste J., Zdrojek M., Wilson-Rae I., Bachtold A. Nat. Nanotechnol. 2011, 6, 339. https://doi.org/10.1038/nnano.2011.71.10.1038/nnano.2011.71Search in Google Scholar PubMed

4. Wu C. F., Yamagishi T. A., Nakamoto Y., Ishida S., Nitta K. H., Kubota S. J. Polym. Sci. Pol. Phys. 2000, 38, 2285. https://doi.org/10.1002/1099-0488(20000901)38:17<2285::AID-POLB90=3.0.CO;2-X.10.1002/1099-0488(20000901)38:17<2285::AID-POLB90>3.0.CO;2-XSearch in Google Scholar

5. Wu C. F., Yamagishi T. A., Nakamoto Y., Ishida S., Kubota S., Nitta K. H. J. Polym. Sci. Pol. Phys. 2000, 38, 1496. https://doi.org/10.1002/(SICI)1099-0488(20000601)38:11<1496::AID-POLB90>3.3.CO;2-O.10.1002/(SICI)1099-0488(20000601)38:11<1496::AID-POLB90>3.0.CO;2-XSearch in Google Scholar

6. Wu C. F., Yamagishi T. A., Nakamoto Y., Ishida S., Nitta K. H. J. Polym. Sci. Pol. Phys. 2000, 38, 2943. https://doi.org/10.1002/1099-0488(20001115)38:22<2943::AID-POLB100>3.0.CO;2-K.10.1002/1099-0488(20001115)38:22<2943::AID-POLB100>3.0.CO;2-KSearch in Google Scholar

7. Wu C. F. J. Polym. Sci. Pol. Phys. 2001, 39, 23. https://doi.org/10.1002/1099-0488(20010101)39:1<23::AID-POLB30>3.0.CO;2-I.10.1002/1099-0488(20010101)39:1<23::AID-POLB30>3.0.CO;2-ISearch in Google Scholar

8. Zhao X. Y., Xiang P., Tian M., Fong H., Jin R., Zhang L. Q. Polymer. 2007, 48, 6056. https://doi.org/10.1016/j.polymer.2007.08.011.10.1016/j.polymer.2007.08.011Search in Google Scholar

9. Zhou X., Zhang G., Zhang W., Guo W., Wang J. Polym. J. 2012, 44, 382. https://doi.org/10.1038/pj.2012.6.10.1038/pj.2012.6Search in Google Scholar

10. Yin X., Liu C., Lin Y., Guan A., Wu G. J. Appl. Polym. Sci. 2015, 132, 41594. https://doi.org/10.1002/app.41954.10.1002/app.41954Search in Google Scholar

11. Steiner T. Angew. Chem., Int. Ed. 2002, 41, 48. https://doi.org/10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U.10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-USearch in Google Scholar

12. Song M., Zhao X. Y., Li Y., Chan T. W., Zhang L. Q., Wu S. Z. RSC Adv. 2014, 4, 48472. https://doi.org/10.1039/c4ra10211h.10.1039/C4RA10211HSearch in Google Scholar

13. Song M., Zhao X. Y., Li Y., Hu S. K., Zhang L. Q., Wu S. Z. RSC Adv. 2014, 4, 6719. https://doi.org/10.1039/c3ra46275g.10.1039/c3ra46275gSearch in Google Scholar

14. Xu K. M., Zhang F. S., Zhang X. L., Hu Q. M., Wu H., Guo S. Y. J. Mater. Chem. A 2014, 2, 8545. https://doi.org/10.1039/c4ta00476k.10.1039/C4TA00476KSearch in Google Scholar

15. Xu K. M., Zhang F. S., Zhang X. L., Guo J. W., Wu H., Guo S. Y. RSC Adv. 2015, 5, 4200. https://doi.org/10.1039/c4ra06644h.10.1039/C4RA06644HSearch in Google Scholar

16. Qiao B., Zhao X. Y., Yue D. M., Zhang L. Q., Wu S. Z. J. Mater. Chem. 2012, 22, 12339. https://doi.org/10.1039/c2jm31716h.10.1039/c2jm31716hSearch in Google Scholar

17. Zhao X. Y., Cao Y. J., Zou H., Li J., Zhang L. Q. J. Appl. Polym. Sci. 2012, 123, 3696. https://doi.org/10.1002/app.35043.10.1002/app.35043Search in Google Scholar

18. Zhao X. Y., Zhang G., Lu F., Zhang L. Q., Wu S. Z. RSC Adv. 2016, 6, 85994. https://doi.org/10.1039/c6ra17283k.10.1039/C6RA17283KSearch in Google Scholar

19. Yang D. W., Zhao X. Y., Chan T., Zhang L. Q., Wu S. Z. J. Mater. Sci. 2016, 51, 5760. https://doi.org/10.1007/s10853-016-9878-7.10.1007/s10853-016-9878-7Search in Google Scholar

20. Xiao D. L., Zhao X. Y., Feng Y. P., Xiang P., Zhang L. Q., Wang W. M. J. Appl. Polym. Sci. 2010, 116, 2143. https://doi.org/10.1002/app.31828.10.1002/pola.23982Search in Google Scholar

21. Zhao X. Y., Lu Y. L., Xiao D. L., Wu S. Z., Zhang L. Q. Macromol. Mater. Eng. 2009, 294, 345. https://doi.org/10.1002/mame.200800375.10.1002/mame.200800375Search in Google Scholar

22. Wu C. F., Kuriyama T., Inoue T. J. Mater. Sci. 2004, 39, 1249. https://doi.org/10.1023/B:JMSC.0000013882.37125.a2.10.1023/B:JMSC.0000013882.37125.a2Search in Google Scholar

23. Lin T. F., Tang Z. H., Guo B. C. ACS Appl. Mater. Inter. 2014, 6, 21060. https://doi.org/10.1021/am500236w.10.1021/am505937pSearch in Google Scholar PubMed

24. Wu C. F., Saburo A. J. Polym. Sci. Pol. Phys. 2004, 42, 209. https://doi.org/10.1002/polb.10540.10.1002/polb.10540Search in Google Scholar

25. Wu C. F. Polymer. 2003, 44, 1697. https://doi.org/10.1016/S0032-3861(02)00918-7.10.1016/S0032-3861(02)00918-7Search in Google Scholar

26. Wu C. F., Mori K., Otani Y., Namiki N., Emi H. Polymer. 2001, 42, 8289. https://doi.org/10.1016/S0032-3861(01)00203-8.10.1016/S0032-3861(01)00203-8Search in Google Scholar

27. Li C., Xu S. A., Xiao F. Y., Wu C. F. Eur. Polym. J. 2006, 42, 2507. https://doi.org/10.1016/j.eurpolymj.2006.06.004.10.1016/j.eurpolymj.2006.06.004Search in Google Scholar

28. Zhang G., Li H. X., Antenseniner M., Chung T. C. Macromolecules. 2015, 48, 2925. https://doi.org/10.1021/acs.macromol.5b00439.10.1021/acs.macromol.5b00439Search in Google Scholar

29. Kim T. H., Oh D. R. Polym. Degrad. Stabil. 2004, 84, 499. https://doi.org/10.1016/j.polymdegradstab.2004.01.008.10.1016/j.polymdegradstab.2004.01.008Search in Google Scholar

30. Shi X. M., Wang J. D., Jiang B. B., Yang Y. R. Polymer. 2013, 54, 1167. https://doi.org/10.1016/j.polymer.2012.12.062.10.1016/j.polymer.2012.12.062Search in Google Scholar

31. Bergenudd H., Eriksson P., DeArmitt C., Stenberg B., Jonsson E. M. Polym. Degrad. Stabil. 2002, 76, 503. https://doi.org/10.1016/S0141-3910(02)00071-X.10.1016/S0141-3910(02)00071-XSearch in Google Scholar

32. Yang Y., Zhao Y. F., Zhan M. S., Wang J. Y., Zhao C., Liu X. Y., Zhang J. H. J. Appl. Polym. Sci. 2015, 132, 42605. https://doi.org/10.1002/app.42605.10.1002/app.42605Search in Google Scholar

33. Zhu J., Zhao X. Y., Liu L., Yang R. N., Song M., Wu S. Z. Polymer. 2018, 155, 152. https://doi.org/10.1016/j.polymer.2018.09.040.10.1016/j.polymer.2018.09.040Search in Google Scholar

34. Shi G. P., Yin X. T., Wu G. Z. Polymer. 2018, 153, 317. https://doi.org/10.1016/j.polymer.2018.08.037.10.1016/j.polymer.2018.08.037Search in Google Scholar

35. Inada Y., Orita H. J. Comput. Chem. 2008, 29, 225. https://doi.org/10.1002/jcc.20782.10.1002/jcc.20782Search in Google Scholar PubMed

36. Sun H. J. Phys. Chem. B. 1998, 102, 7338. https://doi.org/10.1021/jp980939v.10.1021/jp980939vSearch in Google Scholar

37. Habasaki J., Ueda A. J. Non-Cryst. Solids. 2016, 447, 212. https://doi.org/10.1016/j.jnoncrysol.2016.06.015.10.1016/j.jnoncrysol.2016.06.015Search in Google Scholar

38. Bian C., Wang S., Liu Y., Su K., Jing X. Ind. Eng. Chem. Res. 2016, 55, 9440. https://doi.org/10.1021/acs.iecr.6b02136.10.1021/acs.iecr.6b02136Search in Google Scholar

39. Xu K. M., Hu Q. M., Wang J. H., Zhou H. D., Chen J. L. Polymers. 2019, 11, 884. https://doi.org/10.3390/polym11050884.10.3390/polym11050884Search in Google Scholar PubMed PubMed Central

40. Mohammad S., Alkorta I. J. Phys. Chem. A. 2006, 110, 10817.https://doi.org/10.1021/jp062620d.10.1021/jp062620dSearch in Google Scholar PubMed

41. Wu CF. Polymer. 2010, 51, 4452. https://doi.org/10.1016/j.polymer.2010.07.019.10.1016/j.polymer.2010.07.019Search in Google Scholar

Supplementary material

The online version of this article offers supplementary material https://doi.org/10.1515/polyeng-2019-0293.

Received: 2019-09-09
Accepted: 2020-03-03
Published Online: 2020-05-08
Published in Print: 2020-05-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/polyeng-2019-0293/html
Scroll to top button