Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 8, 2020

Structure-properties relationship for energy storage redox polymers: a review

  • Narendra Singh Chundawat , Nishigandh Pande , Ghasem Sargazi , Mazaher Gholipourmalekabadi and Narendra Pal Singh Chauhan ORCID logo EMAIL logo

Abstract

Redox-active polymers among the energy storage materials (ESMs) are very attractive due to their exceptional advantages such as high stability and processability as well as their simple manufacturing. Their applications are found to useful in electric vehicle, ultraright computers, intelligent electric gadgets, mobile sensor systems, and portable intelligent clothing. They are found to be more efficient and advantageous in terms of superior processing capacity, quick loading unloading, stronger security, lengthy life cycle, versatility, adjustment to various scales, excellent fabrication process capabilities, light weight, flexible, most significantly cost efficiency, and non-toxicity in order to satisfy the requirement for the usage of these potential applications. The redox-active polymers are produced through organic synthesis, which allows the design and free modification of chemical constructions, which allow for the structure of organic compounds. The redox-active polymers can be finely tuned for the desired ESMs applications with their chemical structures and electrochemical properties. The redox-active polymers synthesis also offers the benefits of high-scale, relatively low reaction, and a low demand for energy. In this review we discussed the relationship between structural properties of different polymers for solar energy and their energy storage applications.


Corresponding author: Narendra Pal Singh Chauhan, Department of Chemistry, Faculty of Science, Bhupal Nobles' University, Udaipur, Rajasthan, India, E-mail:

References

1. Choi J. W., Aurbach D. Nat. Rev. Mater. 2016, 1, 16013. https://doi.org/10.1002/biot.201000136.Search in Google Scholar

2. Casado N., Hernández G., Sardon H., Mecerreyes D. Prog. Polym. Sci. 2016, 52, 107−135. https://doi.org/10.1016/j.progpolymsci.2015.08.003.Search in Google Scholar

3. Häupler B., Wild A., Schubert U. S. Adv. Energy Mater. 2015, 5, 1402034. https://doi.org/10.1002/aenm.201402034.Search in Google Scholar

4. Liu T., Wei X., Nie Z., Sprenkle V., Wang W. Adv. Energy Mater. 2015, 6, 1501449. https://doi.org/10.1002/aenm.201501449.Search in Google Scholar

5. Liu J., Zhang J. G., Yang Z., Lemmon J. P., Imhoff C., Graff G. L., Li L., Hu J., Wang C., Xiao J., et al. Adv. Funct. Mater. 2013, 23, 929–946. https://doi.org/10.1002/adfm.201200690.Search in Google Scholar

6. Ulaganathan M., Aravindan V., Yan Q., Madhavi S., Skyllas-Kazacos M., Lim T. M. Adv. Mater. 2016, 3, 1500309. https://doi.org/10.1002/admi.201500309.Search in Google Scholar

7. Kim K. J., Park M. S., Kim Y. J., Kim J. H., Dou S. X., Skyllas-Kazacos M., J. Mater. Chem. A 2015, 3, 16913–16933. https://doi.org/10.1039/C5TA02613J.Search in Google Scholar

8. Grey C. P., Tarascon J. M. Sustainability and in situ monitoring in battery development, Nat. Mater. 2017, 16, 45–56, doi: 10.1038/nmat4777.10.1038/nmat4777Search in Google Scholar PubMed

9. Lewis N. S. Science 2016, 351, aad1920–aad1920. https://doi.org/10.1126/science.aad1920.Search in Google Scholar

10. Zhang X., Mi C. C., Yin C. J. Power Sources 2014, 245, 292–300. https://doi.org/10.1016/j.jpowsour.2013.06.117.Search in Google Scholar

11. Larcher D., Tarascon J. M. Nat. Chem. 2015, 7, 19–29. https://doi.org/10.1038/nchem.2085.Search in Google Scholar

12. Yu M. Z., Ren X. D., Ma L., Wu Y. Y. Nat. Commun. 2014, 5, 5111. https://doi.org/10.1038/ncomms6111.Search in Google Scholar

13. Kundu D., Black R., Adams B., Nazar L. F. ACS Cent. Sci. 2015, 1, 510–515. https://doi.org/10.1021/acscentsci.5b00267.Search in Google Scholar

14. Casado N., Herńandez G., Sardon H., Mecerreyes D. Prog. Polym. Sci. 2016, 52, 107–135. https://doi.org/10.1016/j.progpolymsci.2015.08.003.Search in Google Scholar

15. Boudouris B. W. Curr. Opin. Chem. Eng. 2013, 2, 294–301. https://doi.org/10.1016/j.coche.2013.07.002.Search in Google Scholar

16. Root S. E., Savagatrup S., Printz A. D., Rodriquez D., Lipomi D. J. Chem. Rev. 2017, 117, 6467–6499. https://doi.org/10.1021/acs.chemrev.7b00003.Chauhan N. P. S. Biocid. Polym., De Gruyter, Berlin/Boston 2019, https://doi.org/10.1515/9783110639131.Search in Google Scholar

17. McNaught A. D. Wilkinson A. IUPAC compendium of chemical terminology, 2nd ed.; Blackwell Science Publication: Oxford, UK, 1997. ISBN 0865426848.Search in Google Scholar

18. Castellanos S., Gaidelis V., Jankauskas V., Grazulevicius J. V., Brillas E., López-Calahorra, F., Juliá L., Velasco D. Chem. Commun. 2010, 46, 5130–5132. https://doi.org/10.1039/c0cc00529k.Search in Google Scholar

19. Tomlinson E. P., Hay M. E., Boudouris B. W. Macromol. 2014, 47, 6145–6158. https://doi.org/10.1021/ma5014572.Search in Google Scholar

20. Rostro L., Baradwaj A. G., Boudouris, B. W. ACS Appl. Mater. Interfaces 2013, 5, 9896–9901. https://doi.org/10.1021/am403223s.Search in Google Scholar

21. Song Z., Zhan H., Zhou Y. Chem. Commun. 2009, 4, 448–450. https://doi.org/10.1039/B814515F.Search in Google Scholar

22. Lee W., Suzuki S., Miyayama M. Nanomaterials 2014, 4, 599–611. https://doi.org/10.3390/nano4030599.Search in Google Scholar

23. Fahey D. R., Hensley H. D., Ash C. E., Senn D. R. Macromolecules 1997, 30, 387−393. https://doi.org/10.1021/ma961015d.Search in Google Scholar

24. Álvaro C., Jorge M., Nuno R., Francisco B. Int. J. Energy Res. 2015, 39, 889–918. https://doi.org/10.1002/er.3260.Search in Google Scholar

25. Chanyong C., Soohyun K., Riyul K., Yunsuk C., Soowhan K., Ho-Young J., Jung Hoon Y., Hee-Tak K. Renew. Sustain. Energy Rev. 2017, 69, 263-274. https://doi.org/10.1016/j.rser.2016.11.188.Search in Google Scholar

26. Seel F., Güttler H. J., Simon G., Więckowski A. Pure Appl. Chem. 1997, 49, 45−54. https://doi.org/10.1351/pac197749010045.Search in Google Scholar

27. Kim D. J., Hermann, K. R., Prokofjevs A., Otley M. T., Pezzato C., Owczarek M., Stoddart, J. F. J. Am. Chem. Soc. 2017, 139, 6635–6643. https://doi.org/10.1021/jacs.7b01209.Search in Google Scholar

28. Liang Y., Tao Z., Chen J. Adv. Energy Mater. 2012, 2, 742–769. https://doi.org/10.1002/aenm.201100795.Search in Google Scholar

29. Byon H. R., Lee S. W., Chen S., Hammond P. T., Shao Horn Y. Carbon 2011, 49, 457−467. https://doi.org/10.1016/j.carbon.2010.09.042.Search in Google Scholar

30. Choi B. G., Yang M., Hong W. H., Choi J. W., Huh Y. S. ACS Nano 2012, 6, 4020−4028. https://doi.org/10.1021/nn3003345.Search in Google Scholar

31. Wang G., Shen X., Yao J., Park J. Carbon 2009, 47, 2049−2053. https://doi.org/10.1016/j.carbon.2009.03.053.Search in Google Scholar

32. Lian P., Zhu X., Liang S., Li Z., Yang W. Wang H. Electrochim. Acta 2010, 55, 3909−3914. https://doi.org/10.1016/j.electacta.2010.02.025.Search in Google Scholar

33. Sun Y., Wu Q., Shi G. Energy Environ. Sci. 2011, 4, 1113−1132. https://doi.org/10.1039/C0EE00683A.Search in Google Scholar

34. Byon H. R., Gallant B. M., Lee S. W., Shao-Horn Y. Adv. Funct. Mater. 2013, 23, 1037–1045. https://doi.org/10.1002/adfm.201200697.Search in Google Scholar

35. Lee S. W., Gallant B. M., Byon H. R., Hammond P. T., Shao-Horn Y. Energy Environ. Sci. 2011, 4, 1972–1985. https://doi.org/10.1039/C0EE00642D.Search in Google Scholar

36. Xu Y., Sheng K., Li C., Shi G. ACS Nano 2010, 4, 4324−4330. https://doi.org/10.1021/nn101187z.Search in Google Scholar

37. Zhou Y., Bao Q., Tang L. A. L., Zhong Y., Loh K. P. Chem. Mater. 2009, 21, 2950−2956. https://doi.org/10.1021/cm9006603.Search in Google Scholar

38. Chen W., Yan L. Nanoscale 2011, 3, 3132−3137. https://doi.org/10.1039/c1nr10355e.Search in Google Scholar

39. Zhao J., Ren W., Cheng H. M. J. Mater. Chem. 2012, 22, 20197–20202. https://doi.org/10.1039/C2JM34128J.Search in Google Scholar

40. Gan T., Sun J., Huang K., Song L., Li Y. Sensors Actuators B Chem 2013, 177, 412–418. https://doi.org/10.1016/j.snb.2012.11.033.Search in Google Scholar

41. Kim S. K., Kim Y. K., Lee H., Lee S. B., Park H. S. Chem. Sus. Chem. 2014, 7, 1094–1101. https://doi.org/10.1002/cssc.201301061.Search in Google Scholar

42. Milczarek G., Inganas O. Science 2012, 335, 1468–1471. https://doi.org/10.1126/science.Search in Google Scholar

43. Kim Y. J., Wu W., Chun S. E., Whitacre J. F., Bettinger C. J. Proc. Natl. Acad. Sci. USA 2013, 110, 20912–20917. https://doi.org/10.1073/pnas.1314345110.Search in Google Scholar

44. Kim J., Lee J., You J., Park M. S., Hossain M. S. A., Yamauchi Y., Kim J. H. Mater. Horiz. 2016, 3, 517–535. https://doi.org/10.1039/C6MH00165C.Search in Google Scholar

45. Kolb H. C., Finn M. G., Sharpless K. B. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. https://doi.org/10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.3.co;2-x.10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5Search in Google Scholar

46. Hu P., Wang H., Yang Y., Yang J., Lin J., Guo L. Adv. Mater. 2016, 28, 3486–3492. https://doi.org/10.1002/adma.201505917.Search in Google Scholar

47. Hu P., Chen T., Yang Y., Wang H., Luo Z., Yang J., Fu H., Guo L. Nanoscale 2017, 9, 1423–1427. https://doi.org/10.1039/C6NR09190C.Search in Google Scholar

48. Pande N., Jambhale A., Jaspal D., Ambekar J., Kulkarni M. Inorg. Nano-Metal Chem. 2020, 50, 205–209. https://doi.org/10.1080/24701556.2019.1705340.Search in Google Scholar

49. Jung K. N., Kim J., Yamauchi Y., Park M. S., Lee J. W., Kim J. H. J. Mater. Chem. A, 2016, 4, 14050–14068. https://doi.org/10.1039/C6TA04510C.Search in Google Scholar

50. Kim J., Kim J., Ariga K. Joule 2017, 1, 739–768. https://doi.org/10.1016/j.joule.2017.08.018.Search in Google Scholar

51. Mozafari M., Chauhan N. P. S. Fundamental and emerging applications of polyaniline, 1st ed.; Elsevier, Amsterdam The Netherlands, 2020. pp. 1–308.Search in Google Scholar

52. Kim J., You J., Kim E. Macromolecules 2010, 43, 2322–2327. https://doi.org/10.1021/ma9025306.Search in Google Scholar

53. Chauhan N. P. S., Mozafari M., Chundawat N. S., Meghwal K., Ameta R., Ameta S. C. J. Ind. Eng. Chem. 2016, 36, 13–29. https://doi.org/10.1016/j.jiec.2016.03.003.Search in Google Scholar

54. Wild S., Friebe C., Haupler B., Janoschka T., Schubert U. S. Chem. Rev. 2016, 116, 9438–9484. https://doi.org/10.1021/acs.chemrev.6b00070.Search in Google Scholar

55. Song Z., Zhou H. Energy Environ. Sci. 2013, 6, 2280–2301. https://doi.org/10.1039/C3EE40709H.Search in Google Scholar

56. Kolb H. C., Sharpless K. B. Drug Discov. Today 2003, 8, 1128–1137. https://doi.org/10.1016/S1359-6446(03)02933-7.Search in Google Scholar

57. Yigit S., Sanyal R., Sanyal A. Chem. Asian J. 2011, 6, 2648–2659. https://doi.org/10.1002/asia.201100440.Search in Google Scholar

58. McKay C. S., Finn M. G. Chem. Biol. 2014, 21, 1075–1101. https://doi.org/10.1016/j.chembiol.2014.09.002.Search in Google Scholar

59. Boujioui F., Bertrand O., Ernould B., Brassinne J., Janoschka T., Schubert U. S., Vlad A., Gohy J. F. Polym. Chem. 2017, 8, 441–450. https://doi.org/10.1039/C6PY01807F.Search in Google Scholar

60. Ernould B., Bertrand O., Minoia A., Lazzaroni R., Vlad A., Gohy J. F. RSC Adv. 2017, 7, 17301–17310. https://doi.org/10.1039/C7RA02119D.Search in Google Scholar

61. Ryu W. H., Gittleson F. S., Thomsen J. M., Li J., Schwab M. J., Brudvig G. W., Taylor A. D. Nat. Commun.7, 12925. https://doi.org/10.1021/acsenergylett.7b00884.Search in Google Scholar

62. Li F. J., Zhang T., Zhou H. S. Energy Environ. Sci. 2013, 6, 1125–1141. https://doi.org/10.1039/C3EE00053B.Search in Google Scholar

63. Battistuzzi G., Borsari M., Ranieri A., Sola M. J. Am. Chem. Soc. 2002, 124, 26–27. https://doi.org/10.1021/ja017188m.Search in Google Scholar

64. Nam W. Acc. Chem. Res. 2007, 40, 522–531. https://doi.org/10.1021/ar700027f.Search in Google Scholar

65. Johnson C. S., Kang S. H., Vaughey J. T., Pol S. V., Balasubramanian M., Thackeray M. M. Chem. Mater. 2010, 22, 1263–1270. https://doi.org/10.1021/cm902713m.Search in Google Scholar

66. Laoire C. O., Mukerjee S., Abraham K. M., Plichta E. J., Hendrickson M. A. J. Phys. Chem. C 2009, 113, 20127–20134. https://doi.org/10.1021/jp908090s.Search in Google Scholar

67. Laoire C. O., Mukerjee, S., Abraham K. M., Plichta E. J., Hendrickson M. A. J. Phys. Chem. C 2010, 114, 9178–9186. https://doi.org/10.1021/jp102019.Search in Google Scholar

68. Ryu W. H., Gittleson F. S., Schwab M., Goh T., Taylor A. D. Nano Lett. 2015, 15, 434–441. https://doi.org/10.1021/nl503760n.Search in Google Scholar

69. Landa-Medrano I., Ruiz de Larramendi I., Ortiz-Vitoriano N., Pinedo R., Ignacio Ruiz de Larramendi J., Rojo T. J. Power Sources 2014, 249, 110–117. https://doi.org/10.1016/j.jpowsour.2013.10.077.Search in Google Scholar

70. Chang Z., Xu J., Zhang X. Adv. Energy Mater. 2017, 7, 1700875. https://doi.org/10.1002/aenm.201700875.Search in Google Scholar

71. Suguro M., Iwasa S., Kusachi Y., Morioka Y., Nakahara K. Macromol. Rapid Commun. 2007, 28, 1929–1933. https://doi.org/10.1002/marc.200700300.Search in Google Scholar

72. Jahnert T., Haupler B., Janoschka T., Hager M. D., Schubert U. S. Macromol. Chem. Phys. 2013, 214, 2616–2623. https://doi.org/10.1002/macp.201300408.Search in Google Scholar

73. Suga T., Sugita S., Ohshiro H., Oyaizu K., Nishide H. Adv. Mater. 2011, 23, 751–754. https://doi.org/10.1002/adma.201003525.Search in Google Scholar

74. Oyaizu K., Nishide H. Adv. Mater. 2009, 21, 2339–2344. https://doi.org/10.1002/adma.200803554.Search in Google Scholar

75. Oyaizu K., Suga T., Yoshimura K., Nishide H. Macromolecules 2008, 41, 6646–6652. https://doi.org/10.1021/ma702576z.Search in Google Scholar

76. Nakahara K., Iwasa S., Satoh M., Morioka Y., Iriyama J., Suguro M., Hasegawa E. Chem. Phys. Lett. 2002, 359, 351–354. https://doi.org/10.1016/S0009-2614(02)00705-4.Search in Google Scholar

77. Kim JK, Cheruvally G, Choi JW, Ahn JH, Choi DS, Song CE. J. Electrochem. Soc. 2007, 154, A839–A843. https://doi.org/10.1149/1.2752022.Search in Google Scholar

78. Weber A. Z., Mench M. M., Meyers J. P., Ross P. N., Gostick J. T., Liu Q. J. Appl. Electrochem. 2011, 41, 1137–1164. https://doi.org/10.1007/s10800-011-0348-2.Search in Google Scholar

79. Wei X., Xu W., Vijayakumar M., Cosimbescu L., Liu T., Sprenkle V., Wang W. Adv. Mater. 2014, 26, 7649–7653. https://doi.org/10.1002/adma.201403746.Search in Google Scholar

80. Winsberg J., Muench S., Hagemann T., Morgenstern S., Janoschka T., Billing M., Schacher F. H., Hauffman G., Gohy J. F., Hoeppener S., et al. Polym. Chem. 2016, 7, 1711–1718. https://doi.org/10.1039/C5PY02036K.Search in Google Scholar

81. Milczarek G., Inganäs O. Science 2012, 335, 1468–1471. https://doi.org/10.1126/science.1215159.Search in Google Scholar

82. Son E. J., Kim J. H., Kim K., Park C. B. J. Mater. Chem. A 2016, 4, 11179–11202. https://doi.org/10.1039/C6TA03123D.Search in Google Scholar

83. Chauhan N. P. S., Gholipourmalekabadi M, Mozafari M. J. Macromole. Sci. Part A 2017, 54, 655–661. https://doi.org/10.1080/10601325.2017.1317211.Search in Google Scholar

84. Kim Y. J., Wu W., Chun S. E., Whitacre J. F., Bettinger C. J. Adv. Mater. 2014, 26, 6572–6579. https://doi.org/10.1002/adma.201402295.Search in Google Scholar

85. Liu Y., Ai K., Lu L. Chem. Rev. 2014, 114, 5057–5115. https://doi.org/10.1021/cr400407a.Search in Google Scholar

86. Meyer T. J., Huynh, V. M. H., Thorp H. H. Angew. Chem. Int. Ed. 2007, 6, 5284–304. https://doi.org/10.1002/anie.200600917.Search in Google Scholar

87. Kord Forooshani P., Lee B. P. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 9–3. https://doi.org/10.1002/pola.28368.Patil N., Jérôme C., Detrembleur C. Prog. Polym. Sci. 2018, 82, 34–91. https://doi.org/10.1016/j.progpolymsci.2018.04.002.Search in Google Scholar

88. Schnurrer J., Lehr C. M. Int. J. Pharm. 1996, 141, 251–256. https://doi.org/10.1016/0378-5173(96)04625-X.Search in Google Scholar

89. Coombs T. L., Keller P. J. Aquat. Toxicol. 1981, 1, 291–300. https://doi.org/10.1016/0166-445X(81)90023-0.Search in Google Scholar

90. Mozafari M., Chauhan N. P. S. Advanced functional polymers for biomedical applications, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2019.Search in Google Scholar

91. Baty A. M., Leavitt P. K., Siedlecki C. A., Tyler B. J., Suci P. A., Marchant R. E., Geesey G. G. Langmuir 1997, 13, 5702–5710. https://doi.org/10.1021/la9610720.Search in Google Scholar

92. Lu Q., Oh D. X., Lee Y., Jho Y., Hwang D. S., Zeng H. Angew. Chem. Int. Ed. 2013, 52, 3944–3948. https://doi.org/10.1002/anie.201210365.Search in Google Scholar

93. Pillai K. V., Renneckar S. Biomacromolecules 2009, 10, 798–804. https://doi.org/10.1021/bm801284y.Search in Google Scholar

94. Dalsin J. L., Hu B. H., Lee B. P., Messersmith P. B. J. Am. Chem. Soc. 2003, 125, 4253–4258. https://doi.org/10.1021/ja0284963.Search in Google Scholar

95. Dalsin J. L., Lin L., Tosatti S., Vörös J., Textor M., Messersmith P. B. Langmuir 2005, 21, 640–646. https://doi.org/10.1021/la048626g.Search in Google Scholar

96. Tyson C. A., Martell A. E. J. Am. Chem. Soc. 1968, 90, 3379–3386. https://doi.org/10.1021/ja01015a015.Search in Google Scholar

97. Chauhan N. P. S., Chundawat N. S. Inorg. Organomet. Polym., De Gruyter, Berlin 2019, 21; https://doi.org/10.1515/9781501514609.Search in Google Scholar

98. Borgias B. A., Cooper S. R., Koh Y. B., Raymond K. N. Inorg. Chem. 1984, 23, 1009–1016. https://doi.org/10.1021/ic00176a005.Search in Google Scholar

99. Sever M. J., Wilker J. J. Dalt. Trans. 2006, 6, 813–822. https://doi.org/10.1039/B509586G.Search in Google Scholar

100. Chauhan N. P. S., Hosmane N. S., Mozafar M. Mater. Todays Chem. 2019, 14, 100184. https://doi.org/10.1016/j.mtchem.2019.08.003.Search in Google Scholar

101. Yoshino K., Kotaka M., Okamoto M., Kakihana H. Chem. Soc. Jpn. 1979, 52, 3005–3009. https://doi.org/10.1246/bcsj.52.300.Search in Google Scholar

102. Guin P. S., Das S., Mandal P. C. Int. J. Electrochem. 2011, 816202, 1–22. https://doi.org/10.4061/2011/816202.Search in Google Scholar

103. McDowell L. M. J. Biol. Chem. 1999, 274, 20293–20295. https://doi.org/10.1074/jbc.274.29.20293.Search in Google Scholar

104. Yang J., Cohen Stuart M. A., Kamperman M. Chem. Soc. Rev. 2014, 43, 8271–8298. https://doi.org/10.1039/C4CS00185K.Search in Google Scholar

105. Forooshani, P. K., Lee B. P. J. Polym. Sci. Part A: Polym. Chem. 2016, 55, 9–33. https://doi.org/10.1002/pola.28368.Search in Google Scholar

106. Yamamoto H., Ohkawa K. Amino Acids 1993, 5, 71–75. https://doi.org/10.1007/BF00806193.Search in Google Scholar

107. Sever M. J., Wilker J. J. Tetrahedron 2009, 57, 6139–6146. https://doi.org/10.1016/S0040-4020(01)00601-9.Search in Google Scholar

108. Statz A. R., Meagher R. J., Barron A. E., Messersmith P. B. J. Am. Chem. Soc. 2005, 127, 7972–7973. https://doi.org/10.1021/ja0522534.Search in Google Scholar

109. Yu M., Deming T. Macromolecules. 1998, 31, 4739–4745. https://doi.org/10.1021/ma980268z.Search in Google Scholar

110. Yin M., Yuan Y., Liu C., Wang J. Biomaterials 2009, 30, 2764–2773. https://doi.org/10.1016/j.biomaterials.2009.01.039.Search in Google Scholar

111. Yadav N., Yadav N., Singh M. K., Hashmi, S. A. Energy Technol 2019, 1900132. https://doi.org/10.1002/ente.201900132.Search in Google Scholar

112. Yu H., Wu J., Fan L., Xu K., Zhong X., Lin Y., Lin J. Electrochim. Acta, 2011, 56, 6881–6886. https://doi.org/10.1016/j.electacta.2011.06.039.Search in Google Scholar

113. Yin Y., Zhou J., Mansour A. N., Zhou X. J. Power Sources 2011, 196, 5997–6002. https://doi.org/10.1016/j.jpowsour.2011.02.079.Search in Google Scholar

114. Salunkhe R. R., Kaneti Y. V., Kim J., Ho Kim J., Yamauchi Y. Phys. Chem. Chem. Phys. 2016, 18, 29308–29315. https://doi.org/10.1039/C6CP05555A.Search in Google Scholar

115. Gomez I., Leonet O., Alberto Blazquez J., Grande H. J., Mecerreyes D. ACS Macro Lett. 2018, 7, 419–424. https://doi.org/10.1021/acsmacrolett.8b00154.Search in Google Scholar

116. Venkatachalam S., Nayak S. G., Labde J. V., Gharal P. R., Rao K., Kelkar A. K. Degradation and recyclability of Poly (Ethylene Terephthalate). Polyester 2012, https://doi.org/10.5772/48612.Search in Google Scholar

117. Cai X., Lai L., Shen Z., Lin J. J. Mater.Chem. A 2017, 5, 15423–15446. https://doi.org/10.1039/C7TA04354F.Search in Google Scholar

118. Ahmadiparidari A., Warburton R. E., Majidi L., Asadi M., Chamaani A., Jokisaari J. R., Rastegar S., Hemmat Z., Sayahpour B., Assary R. S., et al. Adv. Mater. 2019, 1902518. https://doi.org/10.1002/adma.201902518.Search in Google Scholar

119. Ryu W. H., Gittleson F. S., Thomsen J. M., Li J., Schwab M. J., Brudvig G. W., Taylor A. D. Nat. Commun. 2016, 7, 12925. https://doi.org/10.1038/ncomms12925.Search in Google Scholar

120. Friebe C., Schubert U. S. Top. Curr. Chem. 2017, 375.10.1007/s41061-017-0103-1Search in Google Scholar PubMed

121. Patil N., Aqil A., Ouhib F., Admassie S., Inganäs O., Jérôme C., Detrembleur C. Adv. Mater. 2017, 29, 1703373, https://doi.org/10.1002/adma.201703373.Search in Google Scholar

122. Lukatskaya M. R., Dunn B., Gogotsi Y. Nat. Commun. 2016, 7, 12647, https://doi.org/10.1038/ncomms12647.Search in Google Scholar

123. Miroshnikov M., Divya K. P., Babu G., Meiyazhagan A., Arava L. M. R., Ajayan P. M., John G. J. Mater. Chem. A 2016, 4, 12370, https://doi.org/10.1039/C6TA03166H.Search in Google Scholar

124. Wang S., Wang Q., Shao P., Han Y., Gao X., Ma L., Yuan S., Ma X., Zhou J., Feng X., Wang B. J. Am. Chem. Soc. 2017, 139, 4258–4261. https://doi.org/10.1021/jacs.7b02648.Search in Google Scholar

125. Liu T., Kim K. C., Lee B., Chen Z., Noda S., Jang S. S., Lee S. W. Energy Environ. Sci. 2017, 10, 205–215. https://doi.org/10.1039/C6EE02641A.Search in Google Scholar

126. Vlad A., Singh N., Melinte S., Gohy J. F., Ajayan P. M. Sci. Rep.6, 22194, https://doi.org/10.1038/srep04315.Search in Google Scholar

127. Vlad A., Singh N., Galande C., Ajayan P. M. Adv. Energy Mater. 2015, 5, 1402115, https://doi.org/10.1002/aenm.201402115.Search in Google Scholar

128. Béguin F., Presser V., Balducci A., Frackowiak E. Adv. Mater. 2014, 26, 2219–2251. https://doi.org/10.1002/adma.201304137.Search in Google Scholar

129. Simon P., Gogotsi Y., Dunn B. Science 2014, 343, 1210–1211. https://doi.org/10.1126/science.1249625.Search in Google Scholar

130. Holze R., Wu Y. P. Electrochim. Acta 2014, 122, 93–107. https://doi.org/10.1016/j.electacta.2013.08.100.Search in Google Scholar

131. Ernould B., Devos M., Bourgeois J. P., Rolland J., Vlad A., Gohy J. F. J. Mater. Chem. A 2015, 3, 8832–8839. https://doi.org/10.1039/C5TA00570A.Search in Google Scholar

132. Zhang L., Lyons L., Newhouse J., Zhang Z., Straughan M., Chen Z., Amine K., Hamers R. J., West R. J. Mater. Chem. 2010, 20, 8224–8226. https://doi.org/10.1039/c0jm01596b.Search in Google Scholar

133. Zhang S. S. J. Power Sources 2006, 162, 1379–1394. https://doi.org/10.1016/j.jpowsour.2006.07.074.Search in Google Scholar

134. Gallaway J. W., Barton S. A. C. J. Am. Chem. Soc. 2010, 130, 8527-8536. https://doi.org/10.1021/ja0781543.Search in Google Scholar

135. Scodeller P., Carballo R., Szamocki R., Levin L., Forchiassin F., Calvo E. J. J. Am. Chem. Soc. 2010, 132, 11132–11140. https://doi.org/10.1021/ja1020487.Search in Google Scholar

136. Pöller S., Beyl Y., Vivekananthan J., Guschin D. A., Schuhmann W. Bioelectrochemistry 2012, 87, 178–184. https://doi.org/10.1016/j.bioelechem.2011.11.015.Search in Google Scholar

137. Guo W., Xue X., Wang S., Lin C., Wang Z. L. Nano Lett. 2012, 12, 2520–2523. https://doi.org/10.1021/nl3007159.Search in Google Scholar

138. Xue H., Zhao J., Tang J., Gong H., He P., Zhou H., Yamauchi Y., He J. Chem. Eur. J. 2016, 22, 4915–4923. https://doi.org/10.1002/chem.201504420.Search in Google Scholar

Received: 2020-01-09
Accepted: 2020-03-27
Published Online: 2020-05-08
Published in Print: 2020-05-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/polyeng-2019-0395/html
Scroll to top button