Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 10, 2020

Optimal Performance Regions of Feynman’s Ratchet Engine with Different Optimization Criteria

  • Zemin Ding , Yanlin Ge , Lingen Chen EMAIL logo , Huijun Feng and Shaojun Xia

Abstract

Thermodynamic performance analysis of microscopic Feynman’s engine has always been a hot topic, since it can reveal the operating mechanism of the system and give out the suggestions of performance improvement. The present work explores the optimal performance regions of the ratchet operating, respectively, as heat engine and refrigerator. The major purpose is to obtain the optimal performance bunds and provide theoretical guidelines for the designs of practical microscopic ratchet engine systems. Based on an irreversible Feynman’s ratchet engine, the optimal power output versus thermal efficiency performance and the optimal cooling load versus COP performance in different operation modes are analyzed. The effects of irreversible heat leakage and major design parameters are also explored. By further introducing the ecological function, efficient power, and figure of merit criteria, performance characteristics of ratchet device with different optimization indexes are analyzed and compared with each other. The optimal performance regions concerning different optimization criteria are obtained. The results show that by reasonably selecting design parameters, Feynman’s ratchet can attain the optimal operation conditions for different design purposes.

Award Identifier / Grant number: 51576207

Award Identifier / Grant number: 51306206

Award Identifier / Grant number: 2017CFB498

Funding statement: This paper is supported by the National Natural Science Foundation of China (Project Nos. 51576207, 51306206), Hubei Provincial Natural Science Foundation of China (Project No. 2017CFB498), and the independent scientific research project of Naval University of Engineering (425317Q016).

References

[1] M. Smoluchowski, Experimentell nachweisbare, der üblichen Thermodynamik widersprechende Molekularphänomene, Phys. Z.13 (1912), 1069.Search in Google Scholar

[2] R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics. Vol. I, Addison-Wesley, 1963.Search in Google Scholar

[3] M. Schliwa and G. Woehlke, Molecular motors, Nature422 (2003), no. 6933, 759–765.10.1038/nature01601Search in Google Scholar

[4] G. S. Kottas, L. I. Clarke, D. Horinek and J. Michl, Artificial molecular motors, Chem Rev105 (2005), no. 4, 1281–1376.10.1021/cr0300993Search in Google Scholar

[5] R. D. Astumian, Design principles for Brownian molecular machines: How to swim in molasses and walk in a hurricane, Phys. Chem. Chem. Phys.9 (2007), no. 37, 5067–5083.10.1039/b708995cSearch in Google Scholar

[6] J. B. Schönborn, R. Herges and B. Hartke, Brownian molecular rotors: Theoretical design principles and predicted realizations, J. Chem. Phys.130 (2009), no. 23, 234906.10.1063/1.3148223Search in Google Scholar

[7] P. Reimann, Brownian motors: Noisy transport far from equilibrium, Phys. Rep.361 (2002), no. 2/4, 57–265.10.1016/S0370-1573(01)00081-3Search in Google Scholar

[8] R. D. Astumian and P. Hänggi, Brownian motors, Phys. Today55 (2002), no. 11, 33–39.10.1063/1.1535005Search in Google Scholar

[9] C. Van den Broeck, R. Kawai and P. Meurs, Microscopic analysis of a thermal Brownian motor, Phys. Rev. Lett.93 (2004), no. 9, 090601.10.1103/PhysRevLett.93.090601Search in Google Scholar PubMed

[10] P. Hänggi and F. Marchesoni, Artificial Brownian motors: Controlling transport on the nanoscale, Rev. Mod. Phys.81 (2009), no. 1, 387–442.10.1103/RevModPhys.81.387Search in Google Scholar

[11] J. M. R. Parrondo and P. Español, Criticism of Feynman’s analysis of the ratchet as an engine, Am. J. Phys.64 (1996), no. 9, 1125–1130.10.1119/1.18393Search in Google Scholar

[12] K. Sekimoto, Kinetic characterization of heat bath and the energetics of thermal ratchet models, J. Phys. Soc. Jpn.66 (1997), no. 5, 1234–1237.10.1143/JPSJ.66.1234Search in Google Scholar

[13] T. Hondou and F. Takagi, Irreversible operation in a stalled state of Feynman’s ratchet, J. Phys. Soc. Jpn.67 (1998), no. 9, 2974–2976.10.1143/JPSJ.67.2974Search in Google Scholar

[14] N. Yohei, K. Kyogo and N. Naoko, Unattainability of Carnot efficiency in thermal motors: Coarse graining and entropy production of Feynman-Smoluchowski ratchets, Phys. Rev. E98 (2018), no. 2, 022102.Search in Google Scholar

[15] S. Sieniutycz and J. S. Shiner, Thermodynamics of irreversible processes and its relation to chemical engineering: Second law analyses and finite time thermodynamics, J. Non-Equilib. Thermodyn.19 (1994), no. 4, 303–348.Search in Google Scholar

[16] A. Bejan, Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes, J. Appl. Phys.79 (1996), no. 3, 1191–1218.10.1063/1.362674Search in Google Scholar

[17] K. H. Hoffmann, J. M. Burzler and S. Schubert, Endoreversible thermodynamics, J. Non-Equilib. Thermodyn.22 (1997), no. 4, 311–355.Search in Google Scholar

[18] R. S. Berry, V. A. Kazakov, S. Sieniutycz, Z. Szwast and A. M. Tsirlin, Thermodynamic Optimization of Finite Time Processes, Wiley, Chichester, 1999.Search in Google Scholar

[19] L. G. Chen, C. Wu and F. R. Sun, Finite time thermodynamic optimization of entropy generation minimization of energy systems, J. Non-Equilib. Thermodyn.24 (1999), no. 4, 327–359.10.1515/JNETDY.1999.020Search in Google Scholar

[20] C. Van den Broeck, Thermodynamic efficiency at maximum power, Phys. Rev. Lett.95 (2005), no. 19, 190602.10.1103/PhysRevLett.95.190602Search in Google Scholar PubMed

[21] W. Muschik and K. H. Hoffmann, Endoreversible thermodynamics: A tool for simulating and comparing processes of discrete systems, J. Non-Equilib. Thermodyn.31 (2006), no. 3, 293–317.10.1515/JNETDY.2006.013Search in Google Scholar

[22] S. Sieniutycz and J. Jezowski, Energy Optimization in Process Systems, Elsevier, Oxford, UK, 2009.Search in Google Scholar

[23] B. Andresen, Current trends in finite-time thermodynamics, Angew. Chem. Int. Ed.50 (2011), no. 12, 2690–2704.10.1002/anie.201001411Search in Google Scholar PubMed

[24] S. Sieniutycz and J. Jezowski, Energy Optimization in Process Systems and Fuel Cells, Elsevier, Oxford, UK, 2013.Search in Google Scholar

[25] Z. M. Ding, L. G. Chen, W. H. Wang and F. R. Sun, Progress in study on finite time thermodynamic performance optimization for three kinds of microscopic energy conversion systems, Sci. Sin. Tech.45 (2015), no. 9, 889–918 (in Chinese).10.1360/N092014-00417Search in Google Scholar

[26] Y. L. Ge, L. G. Chen and F. R. Sun, Progress in finite time thermodynamic studies for internal combustion engine cycles, Entropy18 (2016), no. 4, 139.10.3390/e18040139Search in Google Scholar

[27] L. G. Chen and S. J. Xia, Generalized Thermodynamic Dynamic-Optimization for Irreversible Processes, Science Press, Beijing, 2017 (in Chinese).Search in Google Scholar

[28] L. G. Chen and S. J. Xia, Generalized Thermodynamic Dynamic-Optimization for Irreversible Cycles – Thermodynamic and Chemical Theoretical Cycles, Science Press, Beijing, 2017. (in Chinese).Search in Google Scholar

[29] L. G. Chen and S. J. Xia, Generalized Thermodynamic Dynamic-Optimization for Irreversible Cycles –Engineering Thermodynamic Plants and Generalized Engine Cycles, Science Press, Beijing, 2017. (in Chinese).Search in Google Scholar

[30] Z. M. Ding, L. G. Chen and F. R. Sun, Performance characteristic of energy selective electron (ESE) refrigerator with filter heat conduction, Rev. Mex. Fis.56 (2010), no. 2, 125–131.Search in Google Scholar

[31] J. He and B. He, Energy selective electron heat pump with transmission probability, Acta Phys. Sin.59 (2010), no. 4, 2345–2349. (in Chinese).10.7498/aps.59.2345Search in Google Scholar

[32] B. He and J. He, Thermoelectric refrigerator of a double-barrier InAs/InP nanowire heterostructure, Acta Phys. Sin.59 (2010), no. 6, 3846–3850. (in Chinese).10.7498/aps.59.3846Search in Google Scholar

[33] L. G. Chen, Z. M. Ding and F. R. Sun, Model of a total momentum filtered energy selective electron heat pump affected by heat leakage and its performance characteristics, Energy36 (2011), no. 7, 4011–4018.10.1016/j.energy.2011.04.049Search in Google Scholar

[34] Z. M. Ding, L. G. Chen and F. R. Sun, Modeling and performance analysis of energy selective electron (ESE) engine with heat leakage and transmission probability, Sci. China: Phys. Mech. Astron.54 (2011), no. 11, 1925–1936.10.1007/s11433-011-4473-zSearch in Google Scholar

[35] S. Su, J. Guo, G. Su and J. Chen, Performance optimum analysis and load matching of an energy selective electron heat engine, Energy44 (2012), no. 1, 570–575.10.1016/j.energy.2012.05.044Search in Google Scholar

[36] X. Luo, K. Long, J. Wang, T. Qiu, N. Liu and J. He, A theoretical study on the performances of thermoelectric heat engine and refrigerator with two-dimensional electron reservoirs, J. Appl. Phys.115 (2014), no. 24, 244306.10.1063/1.4885295Search in Google Scholar

[37] Z. M. Ding, L. G. Chen, Y. L. Ge, X. Liu and F. R. Sun, Ecological performance optimization for an irreversible double resonance electron heat engine, J. Eng. Thermophys.35 (2014), no. 6, 1035–1039 (in Chinese).Search in Google Scholar

[38] Z. M. Ding, L. G. Chen, Y. L. Ge and F. R. Sun, Performance optimization of total momentum filtering double-resonance energy selective electron heat pump, Physica A447 (2016), 49–61.10.1016/j.physa.2015.11.017Search in Google Scholar

[39] J. L. Zhou, L. G. Chen, Z. M. Ding and F. R. Sun, Exploring the optimal performance of irreversible single resonance energy selective electron refrigerator, Eur. Phys. J. Plus131 (2016), 149.10.1140/epjp/i2016-16149-8Search in Google Scholar

[40] J. L. Zhou, L. G. Chen, Z. M. Ding and F. R. Sun, Analysis and optimization with ecological objective function of irreversible single resonance energy selective electron heat engines, Energy111 (2016), 306–312.10.1016/j.energy.2016.05.111Search in Google Scholar

[41] W. L. Peng, T. J. Liao, Y. C. Zhang, G. Z. Su, G. X. Lin and J. C. Chen, Parametric selection criteria of thermal electron-tunneling amplifiers operating at optimum states, Energ. Convers. Manage.143 (2017), 391–398.10.1016/j.enconman.2017.04.029Search in Google Scholar

[42] T. Schmiedl and U. Seifert, Efficiency of molecular motors at maximum power, Europhys. Lett.83 (2008), no. 3, 30005.10.1209/0295-5075/83/30005Search in Google Scholar

[43] U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines, Rep. Prog. Phys.75 (2012), no. 12, 126001.10.1088/0034-4885/75/12/126001Search in Google Scholar PubMed

[44] C. Van den Broeck, N. Kumar and K. Lindenberg, Efficiency of isothermal molecular machines at maximum power, Phys. Rev. Lett.108 (2012), no. 21, 210602.10.1103/PhysRevLett.108.210602Search in Google Scholar PubMed

[45] M. W. Jack and C. Tumlin, Intrinsic irreversibility limits the efficiency of multidimensional molecular motors, Phys. Rev. E93 (2016), no. 5, 052109.10.1103/PhysRevE.93.052109Search in Google Scholar PubMed

[46] Y. C. Zhang, C. K. Huang, G. X. Lin and J. C. Chen, Efficiency bounds of molecular motors under a trade-off figure of merit, Physica A474 (2017), 230–236.10.1016/j.physa.2017.01.051Search in Google Scholar

[47] B. Q. Ai, L. Wang and L. G. Liu, Brownian micro-engines and refrigerators in a spatially periodic temperature field: Heat flow and performances, Phys. Lett. A352 (2006), no. 4/5, 286–290.10.1016/j.physleta.2005.12.010Search in Google Scholar

[48] Y. Zhang, B. Lin and J. Chen, Performance characteristics of an irreversible thermally driven Brownian microscopic heat engine, Eur. Phys. J. B53 (2006), no. 4, 481–485.10.1140/epjb/e2006-00399-xSearch in Google Scholar

[49] B. Lin and J. Chen, Performance characteristics and parametric optimum criteria of a Brownian micro-refrigerator in a spatially periodic temperature field, J. Phys. A: Math. Theor.42 (2009), no. 7, 075006.10.1088/1751-8113/42/7/075006Search in Google Scholar

[50] Z. M. Ding, L. G. Chen and F. R. Sun, Power and efficiency performances of a micro thermal Brownian heat engine with and without external forces, Braz. J. Phys.40 (2010), no. 2, 141–149.10.1590/S0103-97332010000200003Search in Google Scholar

[51] Z. M. Ding, L. G. Chen and F. R. Sun, Thermodynamic characteristic of a Brownian heat pump in a spatially periodic temperature field, Sci. China: Phys. Mech. Astron.53 (2010), no. 5, 876–885.10.1007/s11433-010-0181-3Search in Google Scholar

[52] Z. M. Ding, L. G. Chen and F. R. Sun, Generalized model and optimum performance of an irreversible thermal Brownian microscopic heat pump, Math. Comput. Model.53 (2011), no. 5/6, 780–792.10.1016/j.mcm.2010.10.015Search in Google Scholar

[53] X. G. Luo, N. Liu and J. Z. He, Optimum analysis of a Brownian refrigerator, Phys. Rev. E87 (2013), no. 2, 022139.10.1103/PhysRevE.87.022139Search in Google Scholar PubMed

[54] M. Asfaw, Thermodynamic feature of a Brownian heat engine operating between two heat baths, Phys. Rev. E89 (2014), no. 1, 012143.10.1103/PhysRevE.89.012143Search in Google Scholar PubMed

[55] E. Açıkkalp, Analysis of a Brownian heat engine with ecological criteria, Eur. Phys. J. Plus131 (2016), 426.10.1140/epjp/i2016-16426-6Search in Google Scholar

[56] S. Velasco, J. M. M. Roco, A. Medina and Hernández A. Calvo, Feynman’s ratchet optimization: Maximum power and maximum efficiency regimes, J. Phys. D, Appl. Phys.34 (2001), no. 6, 1000–1006.10.1088/0022-3727/34/6/323Search in Google Scholar

[57] Z. C. Tu, Efficiency at maximum power of Feynman’s ratchet as a heat engine, J. Phys. A, Math. Theor.41 (2008), no. 31, 312003.10.1088/1751-8113/41/31/312003Search in Google Scholar

[58] F. L. Curzon and B. Ahlborn, Efficiency of a Carnot engine at maximum power output, Am. J. Phys.43 (1975), no. 1, 22–24.10.1119/1.10023Search in Google Scholar

[59] T. Schmiedl and U. Seifert, Efficiency at maximum power: An analytically solvable model for stochastic heat engines, Europhys. Lett.81 (2008), no. 2, 20003.10.1209/0295-5075/81/20003Search in Google Scholar

[60] L. G. Chen, Z. M. Ding and F. R. Sun, Optimum performance analysis of Feynman’s engine as cold and hot ratchets, J. Non-Equilib. Thermodyn.36 (2011), no. 2, 155–177.10.1515/jnetdy.2011.011Search in Google Scholar

[61] J. Bang, R. Pan, T. M. Hoang, J. Ahn, C. Jarzynski, H. T. Quan, et al., Experimental realization of Feynman’s ratchet, New J. Phys.20 (2018), no. 10, 103032.10.1088/1367-2630/aae71fSearch in Google Scholar

[62] F. Angulo-Brown, An ecological optimization criterion for finite-time heat engines, J. Appl. Phys.69 (1991), no. 11, 7465–7469.10.1063/1.347562Search in Google Scholar

[63] Z. Yan, Comment on “Ecological optimization criterion for finite-time heat-engines”, J. Appl. Phys.73 (1993), no. 7, 3583.10.1063/1.354041Search in Google Scholar

[64] L. G. Chen, F. R. Sun and W. Z. Chen, On the ecological figures-of-merit for thermodynamic cycles, J. Eng. Therm. Energy Power9 (1996), no. 6, 374–376 (in Chinese).Search in Google Scholar

[65] P. A. Ngouateu Wouagfack and R. Tchinda, Optimal ecological performance of a four-temperature-level absorption heat pump, Int. J. Therm. Sci.54 (2012), 209–219.10.1016/j.ijthermalsci.2011.12.005Search in Google Scholar

[66] Z. Yan, ε and R for the Carnot refrigerator at maximum εR, Chin. J. Nat.7 (1984), no. 1, 73–74 (in Chinese).Search in Google Scholar

[67] Z. Yan and J. Chen, A class of irreversible Carnot refrigeration cycles with a general heat transfer law, J. Phys. D, Appl. Phys.23 (1990), no. 2, 136–141.10.1088/0022-3727/23/2/002Search in Google Scholar

[68] S. Velasco, J. M. M. Roco, A. Medina and Hernández A. Calvo, New performance bounds for a finite-time Carnot refrigerator, Phys. Rev. Lett.78 (1997), no. 17, 3241–3244.10.1103/PhysRevLett.78.3241Search in Google Scholar

[69] A. E. Allahverdyan, K. Hovhannisyan and G. Mahler, Optimal refrigerator, Phys. Rev. E81 (2010), no. 5, 051129.10.1103/PhysRevE.81.051129Search in Google Scholar PubMed

[70] Y. Wang, M. Li, Z. C. Tu, Hernández A. Calvo and J. M. M. Roco, Coefficient of performance at maximum figure of merit and its bounds for low-dissipation Carnot-like refrigerators, Phys. Rev. E86 (2012), no. 1, 011127.10.1103/PhysRevE.86.011127Search in Google Scholar PubMed

[71] Z. Yan, η and P of a Carnot engine at maximum ηP, J. Xiamen Univ.25 (1986), no. 3, 279–286 (in Chinese).Search in Google Scholar

[72] T. Yilmaz, A new performance criterion for heat engines: Efficient power, J. Energy Inst.79 (2006), no. 1, 38–41.10.1179/174602206X90931Search in Google Scholar

[73] T. Yilmaz, Performance optimization of a Joule-Brayton engine based on the efficient power criterion, Proc. IMechE Part A: J. Power Energy221 (2007), no. 5, 603–608.10.1243/09576509JPE375Search in Google Scholar

[74] R. Arora, S. C. Kaushik and R. Kumar, Performance analysis of Brayton heat engine at maximum efficient power using temperature dependent specific heat of working fluid, J. Therm. Eng.1 (2015), no. 2, 345–354.10.18186/jte.15036Search in Google Scholar

[75] V. Singh and R. S. Johal, Feynman’s ratchet and pawl with ecological criterion: Optimal performance versus estimation with prior information, Entropy19 (2017), no. 11, 576.10.3390/e19110576Search in Google Scholar

[76] S. Sheng, P. Yang and Z. C. Tu, Coefficient of performance at maximum χ-criterion for Feynman ratchet as a refrigerator, Commun. Theor. Phys.62 (2014), no. 4, 589–595.10.1088/0253-6102/62/4/16Search in Google Scholar

[77] R. Long, B. D. Li and W. Liu, Performance analysis for Feynman’s ratchet as a refrigerator with heat leak under different figure of merits, Appl. Math. Model.40 (2016), no. 23/24, 10437–10446.10.1016/j.apm.2016.07.027Search in Google Scholar

[78] A. Bejan, Theory of heat transfer-irreversible power plant, Int. J. Heat Mass Transf.31 (1988), no. 6, 1211–1219.10.1016/0017-9310(88)90064-6Search in Google Scholar

[79] A. Bejan, Theory of heat transfer-irreversible refrigeration plants, Int. J. Heat Mass Transf.32 (1989), no. 9, 1631–1639.10.1016/0017-9310(89)90045-8Search in Google Scholar

Received: 2019-12-16
Accepted: 2020-02-16
Published Online: 2020-03-10
Published in Print: 2020-04-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/jnet-2019-0102/html
Scroll to top button