Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 30, 2020

Energetic Optimization Considering a Generalization of the Ecological Criterion in Traditional Simple-Cycle and Combined-Cycle Power Plants

  • Sergio Levario-Medina , Gabriel Valencia-Ortega and Marco Antonio Barranco-Jiménez EMAIL logo

Abstract

The fundamental issue in the energetic performance of power plants, working both as traditional fuel engines and as combined-cycle turbines (gas-steam), lies in quantifying the internal irreversibilities which are associated with the working substance operating in cycles. The purpose of several irreversible energy converter models is to find objective thermodynamic functions that determine operation modes for real thermal engines and at the same time study the trade-off between energy losses per cycle and the useful energy. As those objective functions, we focus our attention on a generalization of the so-called ecological function in terms of an ϵ parameter that depends on the particular heat transfer law used in the irreversible heat engine model. In this work, we mathematically describe the configuration space of an irreversible Curzon–Ahlborn type model. The above allows to determine the optimal relations between the model parameters so that a power plant operates in physically accessible regions, taking into account internal irreversibilities, introduced in two different ways (additively and multiplicatively). In addition, we establish the conditions that the ϵ parameter must fulfill for the energy converter to work in an optimal region between maximum power output and maximum efficiency points.

Acknowledgment

We want to thank to Professor F. Angulo-Brown for his recommendations to improve this manuscript. We also thank the anonymous reviewer for his relevant comments, which made it possible to improve the article.

References

[1] L. Chen, C. Wu and F. Sun, Finite time thermodynamic optimization or entropy generation minimization of energy systems, J. Non-Equilib. Thermodyn.24 (1999), 260–279.10.1515/JNETDY.1999.020Search in Google Scholar

[2] L. Chen, D. Xia and F. Sun, Ecological optimization of generalized irreversible chemical engines, Int. J. Chem. React. Eng.8 (2010), 1542–6580.10.2202/1542-6580.2361Search in Google Scholar

[3] M. Feidt and M. Costea, From finite time to finite physical dimensions thermodynamics: the Carnot engine and Onsager’s relations revisited, J. Non-Equilib. Thermodyn.43 (2018), 151–161.10.1515/jnet-2017-0047Search in Google Scholar

[4] S. Velasco, J. M. M. Roco, A. Medina, J. A. White and A. Calvo-Hernández, Optimization of heat engines including the saving of natural resources and the reduction of thermal pollution, J. Phys. D, Appl. Phys.33 (2000), 355–359.10.1088/0022-3727/33/4/307Search in Google Scholar

[5] S. Sánchez-Orgaz, A. Medina and A. Calvo Hernández, Maximum overall efficiency for a solar-driven gas turbine power plant, Int. J. Energy Res.37 (2013), 1580–1591.10.1002/er.2967Search in Google Scholar

[6] M. J. Santos, R. P. Merchán, A. Medina and A. Calvo Hernández, Seasonal thermodynamic prediction of the performance of a hybrid solar gas-turbine power plant, Energy Convers. Manag.115 (2016), 89–102.10.1016/j.enconman.2016.02.019Search in Google Scholar

[7] S. Levario-Medina, G. Valencia-Ortega and L. A. Arias-Hernandez, Thermal optimization of Curzon–Ahlborn heat engines operating under some generalized efficient power regimes, Eur. Phys. J. Plus134 (2019), 348: 1–13.10.1140/epjp/i2019-12711-2Search in Google Scholar

[8] A. Bejan, Advanced Engineering Thermodynamics, 3rd ed., John Wiley and Sons Inc., New York, 2006.Search in Google Scholar

[9] M. A. Barranco-Jiménez and F. Angulo-Brown, Thermoeconomic optimisation of Novikov power plant model under maximum ecological conditions, J. Energy Inst.80 (2007), 96–104.10.1179/174602207X187195Search in Google Scholar

[10] J. J. Silva-Martinez and L. A. Arias-Hernandez, Energetic performance of a series arrangement of irreversible power cycles, Rev. Mex. Fis.59 (2013), 1: 192–198.Search in Google Scholar

[11] I. Reyes-Ramírez, M. A. Barranco-Jiménez, A. Rojas-Pacheco and L. Guzmán-Vargas, Global stability analysis of a Curzon–Ahlborn heat engine under different regimes of performance, Entropy16 (2014), 5796–5809.10.3390/e16115796Search in Google Scholar

[12] J. Gonzalez-Ayala, L. A. Arias-Hernandez and F. Angulo-Brown, A graphic approach to include dissipative-like effects in reversible thermal cycles, Eur. Phys. J. B90 (2017), 86: 1–8.10.1140/epjb/e2017-80001-4Search in Google Scholar

[13] H. Feng, L. Chen and F. Sun, Optimal ratios of the piston speeds for a finite speed irreversible Carnot heat engine cycle, Int. J. Sustain. Energy30 (2011), 321–335.10.1080/1478646X.2010.515741Search in Google Scholar

[14] M. Feidt, Finite Physical Dimension Optimal Thermodynamics 1-Fundamentals, 1st ed., ISTE Press, Elsevier, London, 2017.10.1016/B978-1-78548-232-8.50001-7Search in Google Scholar

[15] K. H. Hoffmann, J. M. Burzler and S. Schubert, Endoreversible thermodynamics, J. Non-Equilib. Thermodyn.22 (1997), 311–355.Search in Google Scholar

[16] C. Wu, L. Chen and J. Chen, Recent Advances in Finite Time Thermodynamics, 1st ed., Nova Science, New York, 1999.Search in Google Scholar

[17] A. Durmayaz, O. S. Sogutb, B. Sahin and H. Yavuzd, Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics, Prog. Energy Combust. Sci.30 (2004), 175–217.10.1016/j.pecs.2003.10.003Search in Google Scholar

[18] S. Petrescu, M. Costea, C. Harman and T. Florea, Application of the Direct Method to irreversible Stirling cycles with finite speed, Int. J. Energy Res.26 (2002), 589–609.10.1002/er.806Search in Google Scholar

[19] L. G. Chen, H. J. Feng and F. R. Sun, Optimal piston speed ratio analyses for irreversible Carnot refrigerator and heat pump using finite time thermodynamics, finite speed thermodynamics and direct method, J. Energy Inst.84 (2011), 105–112.10.1179/014426011X12968328625595Search in Google Scholar

[20] M. Feidt, Thermodynamique optimale en dimensions physiques finies, 1st ed., Hermes Science, Paris, 2013 (in French).Search in Google Scholar

[21] F. Angulo-Brown, J. Fernández-Betanzos and C. A. Pico, Compression ratio of an optimized air standard Otto-cycle model, Eur. J. Phys.15 (1994), 38–42.10.1088/0143-0807/15/1/007Search in Google Scholar

[22] F. Angulo-Brown, J. A. Rocha-Martínez and T. D. Navarrete-González, A non-endoreversible Otto cycle model: improving power output and efficiency, J. Phys. D29 (1996), 80–83.10.1088/0022-3727/29/1/014Search in Google Scholar

[23] A. Fischer and K. H. Hoffmann, Can a quantitative simulation of an Otto engine be accurately rendered by a simple Novikov model with heat leak? J. Non-Equilib. Thermodyn.29 (2004), 9–28.10.1515/JNETDY.2004.002Search in Google Scholar

[24] P. L. Curto Risso, A. Medina and A. Calvo Hernández, Theoretical and simulated models for an irreversible Otto cycle, J. Appl. Phys.104 (2008), 094911: 1–11.10.1063/1.2986214Search in Google Scholar

[25] P. L. Curto Risso, A. Medina and A. Calvo Hernández, Optimizing the operation of a spark ignition engine: simulation and theoretical tools, J. Appl. Phys.105 (2009), 094904-1–094904-10.10.1063/1.3116560Search in Google Scholar

[26] Y. Izumida and K. Okuda, Molecular kinetic analysis of a finite-time Carnot cycle, Europhys. Lett.83 (2008), 60003-p1–60003-p6.10.1209/0295-5075/83/60003Search in Google Scholar

[27] D. A. Rojas-Gamboa, J. I. Rodríguez, J. Gonzalez-Ayala and F. Angulo-Brown, Ecological efficiency of finite-time thermodynamics: a molecular dynamics study, Phys. Rev. E98 (2018), 022130-1–022130-11.10.1103/PhysRevE.98.022130Search in Google Scholar

[28] A. De Vos, Endoreversible Thermodynamics of Solar Energy Conversion, 1st ed., Oxford University Press, Oxford, 1992.10.1016/0927-0248(93)90008-QSearch in Google Scholar

[29] S. Özkaynak, S. Göktun and H. Yavuz, Finite-time thermodynamic analysis of a radiative heat engine with internal irreversibility, J. Phys. D, Appl. Phys.27 (1994), 1139–1143.10.1088/0022-3727/27/6/010Search in Google Scholar

[30] J. Chen, The maximum power output and maximum efficiency of an irreversible Carnot heat engine, J. Phys. D, Appl. Phys.27 (1994), 1144–1149.10.1088/0022-3727/27/6/011Search in Google Scholar

[31] F. Angulo-Brown, An ecological optimization criterion for finite-time heat engines, J. Appl. Phys.69 (1991), 7465–7469.10.1063/1.347562Search in Google Scholar

[32] A. Calvo-Hernández, A. Medina, J. M. M. Roco, J. A. White and S. Velasco, Unified optimization criterion for energy converters, Phys. Rev. E63 (2001), 037102. 1–4.Search in Google Scholar

[33] T. Yilmaz, A new performance criterion for heat engines: efficient power, J. Energy Inst.79 (2006), 38–41.10.1179/174602206X90931Search in Google Scholar

[34] F. L. Curzon and B. Ahlborn, Efficiency of a Carnot engine at maximum power output, Am. J. Phys.43 (1975), 22–24.10.1119/1.10023Search in Google Scholar

[35] J. Chen, Z. Yan, G. Lin and B. Andresen, On the Curzon–Ahlborn efficiency and its connection with the efficiencies of real heat engines, Energy Convers. Manag.42 (2001), 173–181.10.1016/S0196-8904(00)00055-8Search in Google Scholar

[36] M. H. Rubin, Optimal configuration of a class of irreversible heat engines. I, Phys. Rev. A19 (1979), 1272–1276.10.1103/PhysRevA.19.1272Search in Google Scholar

[37] R. C. Tolman and P. C. Fine, On the irreversible production of entropy, Rev. Mod. Phys.20 (1948), 51–77.10.1103/RevModPhys.20.51Search in Google Scholar

[38] S. Levario-Medina and L. A. Arias-Hernandez, The PΦ-Compromise Function as a criterion of merit to optimize irreversible thermal engines, preprint (2019), http://arxiv.org/pdf/1908.11861v1.Search in Google Scholar

[39] A. Bejan, Theory of heat transfer-irreversible power plants, Int. Heat Mass Transf.31 (1988), 1211–1219.10.1016/0017-9310(88)90064-6Search in Google Scholar

[40] J. M. Gordon and M. Huleihil, General performance characteristics of real heat engines, J. Appl. Phys.72 (1992), 829–837.10.1063/1.351755Search in Google Scholar

[41] J. M. Gordon and M. Huleihil, On optimizing maximum-power heat engines, J. Appl. Phys.69 (1991), 1–7.10.1063/1.347744Search in Google Scholar

[42] L. A. Arias-Hernandez, M. A. Barranco-Jiménez and F. Angulo-Brown, Comparative analysis of two ecological type modes of performance for a simple energy converter, J. Energy Inst.82 (2009), 223–227.10.1179/014426009X12448189963432Search in Google Scholar

[43] L. A. AriasHernandez and F. AnguloBrown, A general property of endoreversible thermal engines, J. Appl. Phys.81 (1997), 2973–2979.10.1063/1.364090Search in Google Scholar

[44] S. Sieniutycz and P. Salamon, Finite Time Thermodynamics and Thermoeconomics, 1st ed., Taylor and Francis, New York, 1990.Search in Google Scholar

[45] G. Valencia-Ortega and L. A. Arias-Hernandez, Thermodynamic optimization of an electric circuit as a non-steady energy converter, J. Non-Equilib. Thermodyn.42 (2017), 187–200.10.1515/jnet-2016-0037Search in Google Scholar

[46] S. Levario-Medina, Estudio del desempeño energético de un motor térmico operando a potencia eficiente generalizada, Master Thesis, ESFM-IPN, México 2016 (in Spanish).Search in Google Scholar

[47] R. Clausius, The Mechanical Theory of Heat, 1st ed., Mac Millan and Co., London, 1879.Search in Google Scholar

[48] P. Salamon, K. H. Hoffmann, S. Schubert, R. S. Berry and B. Andresen, What conditions make minimum entropy production equivalent to maximum power production? J. Non-Equilib. Thermodyn.26 (2001), 73–83.10.1515/JNETDY.2001.006Search in Google Scholar

[49] A. Ocampo-García, M. A. Barranco-Jiménez and F. Angulo-Brown, Thermodynamic and thermoeconomic optimization of coupled thermal and chemical engines by means of an equivalent array of uncoupled endoreversible engines, Eur. Phys. J. Plus133 (2018), 342: 1–16.10.1140/epjp/i2018-12158-ySearch in Google Scholar

[50] K. Schwalbe and K. H. Hoffmann, Optimal Control of an endoreversible solar power plant, J. Non-Equilib. Thermodyn.43 (2018), 255–271.10.1515/jnet-2018-0021Search in Google Scholar

[51] M. A. Barranco-Jiménez, A. Ocampo-García and F. Angulo-Brown, Thermodynamic analysis of an array of isothermal endoreversible electric engines, Eur. Phys. J. Plus135 (2020), 153: 1–14.10.1140/epjp/s13360-019-00038-7Search in Google Scholar

[52] F. Angulo-Brown, M. Santillán and E. Calleja-Quevedo, Thermodynamic optimality in some biochemical reactions, Il Nuovo Cimento D17 (1995), 87–90.10.1007/BF02451604Search in Google Scholar

[53] M. Santillán, L. A. Arias-Hernandez and F. Angulo-Brown, Some optimization criteria for biological systems in linear irreversible thermodynamics, IL Nuovo Cimento D19 (1997), 99–112.Search in Google Scholar

[54] M. A. Barranco-Jiménez and F. Angulo-Brown, A nonendoreversible model for wind energy as a solar-driven heat engine, J. Appl. Phys.80 (1996), 4872–4876.10.1063/1.363732Search in Google Scholar

[55] M. A. Barranco-Jiménez and F. Angulo-Brown, A simple model on the influence of the greenhouse effect on the efficiency of solar-to-wind energy conversion, IL Nuovo Cimento D26 (2003), 235–246.Search in Google Scholar

[56] F. Angulo-Brown and L. A. Arias-Hernandez, Reply to “Comment on ‘A general property of endoreversible thermal engines”’ [J. Appl. Phys. 89, 1518 (2001)], J. Appl. Phys.89 (2001), 1520–1521.10.1063/1.1335619Search in Google Scholar

Received: 2019-11-08
Revised: 2020-03-20
Accepted: 2020-05-08
Published Online: 2020-05-30
Published in Print: 2020-07-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/jnet-2019-0088/html
Scroll to top button