Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 22, 2019

Dynamical Analysis of a Fractional-Order Hantavirus Infection Model

  • Mahmoud Moustafa ORCID logo , Mohd Hafiz Mohd , Ahmad Izani Ismail and Farah Aini Abdullah EMAIL logo

Abstract

This paper considers a Hantavirus infection model consisting of a system of fractional-order ordinary differential equations with logistic growth. The fractional-order model describes the spread of Hantavirus infection in a system consisting of a population of susceptible and infected mice. The existence, uniqueness, non-negativity and boundedness of the solutions are established. In addition, the local and global asymptotic stability of the equilibrium points of the fractional order system and the basic reproduction number are studied. The impact of basic reproduction number and carrying capacity on the stability of the fractional order system are also theoretically and numerically investigated.

MSC 2010: 92D25; 26A33; 34D23

Acknowledgements

This work was supported by the Fundamental Research Grant (Sponsors-Ministry of Education Malaysia (MOE), Division of Research and Innovation, Research Creativity and Management Office (RCMO), Universiti Sains Malaysia) Grant Acct. No.: 203/PMATHS/6711570.

References

[1] G. Abramson and V. M. Kenkre, Spatiotemporal patterns in the Hantavirus infection, Phys. Rev. E. 66 (2002), 011912.10.1103/PhysRevE.66.011912Search in Google Scholar

[2] L. C. de Castro Medeiros, C. A. R. Castilho, C. Braga, W. V. De Souza, L. Regis and A. M. V. Monteiro, Modeling the dynamic transmission of dengue fever: Investigating disease persistence, PLoS Negl. Trop. Dis. 5 (2011), e942.10.1371/journal.pntd.0000942Search in Google Scholar

[3] F. A. Abdullah and A. I. Ismail, Simulations of the spread of the Hantavirus using fractional differential equations, Matematika. 27 (2011), 149–158.Search in Google Scholar

[4] J. A. Reinoso and F. J. De La Rubia, Spatial spread of the Hantavirus infection, Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 91 (2015), 032703.10.1103/PhysRevE.91.032703Search in Google Scholar

[5] I. D. Peixoto and G. Abramson, The effect of biodiversity on the Hantavirus epizootic, Ecology. 87 (2006), 873–879.10.1890/0012-9658(2006)87[873:TEOBOT]2.0.CO;2Search in Google Scholar

[6] M. Chen and D. P. Clemence, Analysis of and numerical schemes for a mouse population model in Hantavirus epidemics, J. Differ. Equ. Appl. 12 (2006), 887–899.10.1080/10236190600779791Search in Google Scholar

[7] T. Gedeon, C. Bodelón and A. Kuenzi, Hantavirus transmission in sylvan and peridomestic environments, Bull. Math. Biol. 72 (2010), 541–564.10.1007/s11538-009-9460-4Search in Google Scholar

[8] L. J. S. Allen, C. L. Wesley, R. D. Owen, D. G. Goodin, D. Koch, C. B. Jonsson, Y. Chu, J. M. S. Hutchinson and R. L. Paige, A habitat-based model for the spread of Hantavirus between reservoir and spillover species, J. Theor. Biol. 260 (2009), 510–522.10.1016/j.jtbi.2009.07.009Search in Google Scholar

[9] S. Z. Rida, A. S. Abd-elradi, A. Arafa and M. Khalil, The effect of the environmental parameter on the Hantavirus infection through a fractional-order SI model, Int. J. Basic Appl. Sci. 1 (2012), 88–99.Search in Google Scholar

[10] M. A. Aguirre, G. Abramson, A. R. Bishop and V. M. Kenkre, Simulations in the mathematical modeling of the spread of the Hantavirus, Phys. Rev. E. 66 (2002), 041908.10.1103/PhysRevE.66.041908Search in Google Scholar

[11] J. Buceta, C. Escudero, F. J. Rubia and K. Lindenberg, Outbreaks of Hantavirus induced by seasonality, Phys. Rev. E. 69 (2004), 021906.10.1103/PhysRevE.69.021906Search in Google Scholar

[12] M. F. A. Karim, A. I. M. Ismail and H. B. Ching, Cellular automata modelling of Hantarvirus infection, Chaos, Solitons Fractals 41 (2009), 2847–2853.10.1016/j.chaos.2008.10.029Search in Google Scholar

[13] G. Abramson, The criticality of the Hantavirus infected phase at Zuni, arXiv preprint q-bio/0407003 (2004).Search in Google Scholar

[14] S. M. Goh, A. I. M. Ismail, M. S. M. Noorani and I. Hashim, Dynamics of the Hantavirus infection through variational iteration method, Nonlinear Anal. Real World Appl. 10 (2009), 2171–2176.10.1016/j.nonrwa.2008.03.025Search in Google Scholar

[15] M. Moustafa, M. H. Mohd, A. I. Ismail and F. A. Abdullah, Dynamical analysis of a fractional-order Rosenzweig–MacArthur model incorporating a prey refuge, Chaos, Solitons & Fractals 109 (2018), 1–13.10.1016/j.chaos.2018.02.008Search in Google Scholar

[16] K. Nosrati and M. Shafiee, Dynamic analysis of fractional-order singular Holling type-II predator–prey system, Appl. Math. Comput. 313 (2017), 159–179.10.1016/j.amc.2017.05.067Search in Google Scholar

[17] R. Ghaziani, J. Alidousti and A. B. Eshkaftaki, Stability and dynamics of a fractional order Leslie–Gower prey–predator model, Appl. Math. Model. 40 (2016), 2075–2086.10.1016/j.apm.2015.09.014Search in Google Scholar

[18] A. E. Matouk and A. A. Elsadany, Dynamical analysis, stabilization and discretization of a chaotic fractional-order GLV model, Nonlinear Dyn. 85 (2016), 1597–1612.10.1007/s11071-016-2781-6Search in Google Scholar

[19] R. P. Agarwal, D. Baleanu, J. J. Nieto, D. F. M. Torres and Y. Zhou, A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, J. Comput. Appl. Math. 339 (2018), 3–29.10.1016/j.cam.2017.09.039Search in Google Scholar

[20] A. A. Elsadany and A. E. Matouk, Dynamical behaviors of fractional-order Lotka–Volterra predator–prey model and its discretization, J. Appl. Math. Comput. 49 (2015), 269–283.10.1007/s12190-014-0838-6Search in Google Scholar

[21] F. A. Rihan, D. Baleanu, S. Lakshmanan and R. Rakkiyappan, On fractional SIRC model with Salmonella bacterial infection, Abstr. and Appl. Anal. 2014 (2014), 1–9.10.1155/2014/136263Search in Google Scholar

[22] M. Moustafa, M. H. Mohd, A. I. Ismail and F. A. Abdullah, Dynamical analysis of a fractional-order Rosenzweig–MacArthur model with stage structure incorporating a prey refuge, Progress Fractional Differ. Appl. 5 (2019), 1–17.10.18576/pfda/050101Search in Google Scholar

[23] I. Area, H. Batarfi, J. Losada, J. J. Nieto, W. Shammakh and Á. Torres, On a fractional order Ebola epidemic model, Adv. Differ. Equ. 2015 (2015), 278.Search in Google Scholar

[24] C. Pinto, A. M. Carvalho, D. Baleanu and H. M. Srivastava, Efficacy of the post-exposure prophylaxis and of the HIV latent reservoir in HIV infection, Mathematics. 7 (2019), 515.10.3390/math7060515Search in Google Scholar

[25] C. A. Pinto and A. M. Carvalho, Diabetes mellitus and TB co-existence: Clinical implications from a fractional order modelling, Appl. Math. Model. 68 (2019), 219–243.10.1016/j.apm.2018.11.029Search in Google Scholar

[26] A. M. Carvalho and C. A. Pinto, Immune response in HIV epidemics for distinct transmission rates and for saturated CTL response, Math. Model. Nat. Phenom. 14 (2019), 307.10.1051/mmnp/2019007Search in Google Scholar

[27] I. Area, J. Losada and J. J. Nieto, A note on the fractional logistic equation, Physica A. 444 (2016), 182–187.10.1016/j.physa.2015.10.037Search in Google Scholar

[28] L. Hong-Li, Z. Long, H. Cheng, J. Yao-Lin and T. Zhidong, Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge, J. Appl. Math. Comput. 54 (2016), 435–449.Search in Google Scholar

[29] B. J. West, Exact solution to fractional logistic equation, Physica A. 429 (2015), 103–108.10.1016/j.physa.2015.02.073Search in Google Scholar

[30] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006.Search in Google Scholar

[31] D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional calculus: Models and numerical methods, vol. 3, World Scientific, Singapore, 2012, doi: 10.1142/8180.Search in Google Scholar

[32] R. Almeida, What is the best fractional derivative to fit data? Appl. Anal. Discrete Math. 11 (2017), 358–368.Search in Google Scholar

[33] I. Area, J. Losada and J. J. Nieto, On fractional derivatives and primitives of periodic functions, Abstr. and Appl. Anal. 2014 (2014), 1–8.10.1155/2014/392598Search in Google Scholar

[34] G. González-Parra, A. J. Arenas and B. M. Chen-Charpentier, A fractional order epidemic model for the simulation of outbreaks of influenza A (H1N1), Math. Methods Appl. Sci. 37 (2014), 2218–2226.10.1002/mma.2968Search in Google Scholar

[35] A. J. Arenas, G. González-Parra and B. M. Chen-Charpentier, Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order, Math. Comput. Simul. 121 (2016), 48–63.10.1016/j.matcom.2015.09.001Search in Google Scholar

[36] M. Das, A. Maiti and G. P. Samanta, Stability analysis of a prey-predator fractional order model incorporating prey refuge, Ecol. Genet. Genomics 7 (2018), 33–46.10.1016/j.egg.2018.05.001Search in Google Scholar

[37] S. K. Choi, B. Kang and N. Koo, Stability for Caputo fractional differential systems, Abstr. Appl. Anal. 2014 (2014), 1–6.10.1155/2014/631419Search in Google Scholar

[38] Z. Wei, Q. Li and J. Che, Initial value problems for fractional differential equations involving Riemann–Liouville sequential fractional derivative, J. Math. Anal. Appl. 367 (2010), 260–272.10.1016/j.jmaa.2010.01.023Search in Google Scholar

[39] P. Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), 29–48.10.1016/S0025-5564(02)00108-6Search in Google Scholar

[40] E. Ahmed, A. El-Sayed and H. A. El-Saka, Equilibrium points, stability and numerical solutions of fractional-order predator–prey and rabies models, J. Math. Anal. Appl. 325 (2007), 542–553.10.1016/j.jmaa.2006.01.087Search in Google Scholar

[41] D. Matignon, Stability results for fractional differential equations with applications to control processing, in: Computational engineering in systems applications, Vol. 2, pp. 963–968, Lille, France, 1996.Search in Google Scholar

[42] C. Vargas-De-León, Volterra-type Lyapunov functions for fractional-order epidemic systems, Commun. Nonlinear Sci. Numer. Simul. 24 (2015), 75–85.10.1016/j.cnsns.2014.12.013Search in Google Scholar

[43] J. Huo, H. Zhao and L. Zhu, The effect of vaccines on backward bifurcation in a fractional order HIV model, Nonlinear Anal. Real World Appl. 26 (2015), 289–305.10.1016/j.nonrwa.2015.05.014Search in Google Scholar

Received: 2018-09-30
Accepted: 2019-09-30
Published Online: 2019-10-22
Published in Print: 2020-04-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/ijnsns-2018-0292/html
Scroll to top button