Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 16, 2018

d-orthogonality of a generalization of both Laguerre and Hermite polynomials

  • Mongi Blel and Youssèf Ben Cheikh EMAIL logo

Abstract

In this work, we give a unification and generalization of Laguerre and Hermite polynomials for which the orthogonal property is replaced by d-orthogonality. We state some properties of these new polynomials.

MSC 2010: 42C05; 33C45; 33C20

Funding statement: This project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center.

References

[1] A. I. Aptekarev, Multiple orthogonal polynomials, J. Comput. Appl. Math. 99 (1998), no. 1–2, 423–447. 10.1016/S0377-0427(98)00175-7Search in Google Scholar

[2] Y. Ben Cheikh, Decomposition of the Boas-Buck polynomials with respect to the cyclic group of order n, Ann. Univ. Mariae Curie-Skłodowska Sect. A 52 (1998), no. 2, 15–27. Search in Google Scholar

[3] Y. Ben Cheikh, On some (n-1)-symmetric linear functionals, J. Comput. Appl. Math. 133 (2001), no. 1–2, 207–218. 10.1016/S0377-0427(00)00647-6Search in Google Scholar

[4] Y. Ben Cheikh and N. Ben Romdhane, d-symmetric d-orthogonal polynomials of Brenke type, J. Math. Anal. Appl. 416 (2014), no. 2, 735–747. 10.1016/j.jmaa.2014.02.046Search in Google Scholar

[5] Y. Ben Cheikh and K. Douak, On the classical d-orthogonal polynomials defined by certain generating functions. I, Bull. Belg. Math. Soc. Simon Stevin 7 (2000), no. 1, 107–124. 10.36045/bbms/1103055723Search in Google Scholar

[6] Y. Ben Cheikh and K. Douak, On the classical d-orthogonal polynomials defined by certain generating functions. II, Bull. Belg. Math. Soc. Simon Stevin 8 (2001), no. 4, 591–605. 10.36045/bbms/1102714790Search in Google Scholar

[7] Y. Ben Cheikh and M. Gaied, Dunkl–Appell d-orthogonal polynomials, Integral Transforms Spec. Funct. 18 (2007), no. 7–8, 581–597. 10.1080/10652460701445302Search in Google Scholar

[8] Y. Ben Cheikh, I. Lamiri and A. Ouni, On Askey-scheme and d-orthogonality. I. A characterization theorem, J. Comput. Appl. Math. 233 (2009), no. 3, 621–629. 10.1016/j.cam.2009.02.029Search in Google Scholar

[9] Y. Ben Cheikh, I. Lamiri and A. Ouni, d-orthogonality of little q-Laguerre type polynomials, J. Comput. Appl. Math. 236 (2011), no. 1, 74–84. 10.1016/j.cam.2011.03.006Search in Google Scholar

[10] Y. Ben Cheikh and A. Ouni, Some generalized hypergeometric d-orthogonal polynomial sets, J. Math. Anal. Appl. 343 (2008), no. 1, 464–478. 10.1016/j.jmaa.2008.01.055Search in Google Scholar

[11] Y. Ben Cheikh and A. Zaghouani, d-orthogonality via generating functions, J. Comput. Appl. Math. 199 (2007), no. 1, 2–22. 10.1016/j.cam.2005.01.051Search in Google Scholar

[12] M. Blel and Y. Ben Cheikh, On some m-symmetric generalized hypergeometric d-orthogonal polynomials, Integral Transform. Spec. Funct., to appear. Search in Google Scholar

[13] T. S. Chihara, Orthogonal polynomials with Brenke type generating functions, Duke Math. J. 35 (1968), 505–517. 10.1215/S0012-7094-68-03551-5Search in Google Scholar

[14] T. S. Chihara, An Introduction to Orthogonal Polynomials, Math. Appl. 13, Gordon and Breach Science, New York, 1978. Search in Google Scholar

[15] K. Douak, The relation of the d-orthogonal polynomials to the Appell polynomials, J. Comput. Appl. Math. 70 (1996), no. 2, 279–295. 10.1016/0377-0427(95)00211-1Search in Google Scholar

[16] K. Endl, Les polynômes de Laguerre et de Hermite comme cas particuliers d’une classe de polynômes orthogonaux. I, Ann. Sci. Éc. Norm. Supér. (3) 73 (1956), 1–13. 10.24033/asens.1040Search in Google Scholar

[17] R. Koekoek, P. A. Lesky and R. F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their q-Analogues, Springer Monogr. Math., Springer, Berlin, 2010. 10.1007/978-3-642-05014-5Search in Google Scholar

[18] A. B. J. Kuijlaars and L. Zhang, Singular values of products of Ginibre random matrices, multiple orthogonal polynomials and hard edge scaling limits, Comm. Math. Phys. 332 (2014), no. 2, 759–781. 10.1007/s00220-014-2064-3Search in Google Scholar

[19] I. Lamiri, d-orthogonality of discrete q-Hermite type polynomials, J. Approx. Theory 170 (2013), 116–133. 10.1016/j.jat.2012.07.002Search in Google Scholar

[20] Y. L. Luke, The Special Functions and Their Approximations. Vol. I, Math. Sci. Eng. 53, Academic Press, New York, 1969. Search in Google Scholar

[21] P. Maroni, L’orthogonalité et les récurrences de polynômes d’ordre supérieur à deux, Ann. Fac. Sci. Toulouse Math. (5) 10 (1989), no. 1, 105–139. 10.5802/afst.672Search in Google Scholar

[22] H. M. Srivastava and H. L. Manocha, A treatise on Generating Functions, Ellis Horwood Ser. Mat. Appl., Ellis Horwood, Chichester, 1984. Search in Google Scholar

[23] J. Van Iseghem, Vector orthogonal relations. Vector QD-algorithm, J. Comput. Appl. Math. 19 (1987), no. 1, 141–150. 10.1016/S0377-0427(87)80019-5Search in Google Scholar

[24] S. Varma and F. Taşdelen, On a different kind of d-orthogonal polynomials that generalize the Laguerre polynomials, Math. Æterna 2 (2012), no. 5–6, 561–572. Search in Google Scholar

[25] A. Zaghouani, Some basic d-orthogonal polynomial sets, Georgian Math. J. 12 (2005), no. 3, 583–593. 10.1515/GMJ.2005.583Search in Google Scholar

Received: 2016-05-27
Accepted: 2016-07-07
Published Online: 2018-06-16
Published in Print: 2020-06-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.4.2024 from https://www.degruyter.com/document/doi/10.1515/gmj-2018-0043/html
Scroll to top button