Skip to main content
Log in

On the kinetics of Hadamard-type fractional differential systems

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

This paper is devoted to the investigation of the kinetics of Hadamard-type fractional differential systems (HTFDSs) in two aspects. On one hand, the nonexistence of non-trivial periodic solutions for general HTFDSs, which are considered in some functional spaces, is proved and the corresponding eigenfunction of Hadamard-type fractional differential operator is also discussed. On the other hand, by the generalized Gronwall-type inequality, we estimate the bound of the Lyapunov exponents for HTFDSs. In addition, numerical simulations are addressed to verify the obtained theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K.B. Oldham, J. Spanier, The Fractional Calculus. Academic Press, New York (1974).

    MATH  Google Scholar 

  2. W.H. Deng, C.P. Li, J.H. Lu, Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dynam. 48, No 4 (2006), 409–416.

    Article  MathSciNet  Google Scholar 

  3. R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014).

    Book  Google Scholar 

  4. C. Yin, Y.H. Cheng, Y.Q. Chen, B. Stark, S.M. Zhong, Adaptive fractional-order switching-type control method design for 3D fractional-order nonlinear systems. Nonlinear Dynam. 82, No 1-2 (2015), 39–52.

    Article  MathSciNet  Google Scholar 

  5. L. Ma, C.P. Li, Center manifold of fractional dynamical system. J. Comput. Nonlinear Dynam. 11, No 2 (2016), Art. 021010.

    Google Scholar 

  6. A. Hajipour, M. Hajipour, D. Baleanu, On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system. Physica A 497 (2018), 139–153.

    Article  MathSciNet  Google Scholar 

  7. J. Hadamard, Essai sur l’étude des fonctions données par leur développment de Taylor. J. Math. Pure. Appl. 8 (1892), 101–186.

    MATH  Google Scholar 

  8. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Science, Amsterdam (2006).

    MATH  Google Scholar 

  9. C. Lomnitz, Creep measurements in igneous rocks. J. Geol. 64, No 5 (1956), 473–479.

    Article  Google Scholar 

  10. H. Jeffreys, A modification of Lomnitz’s law of creep in rocks. Geophys. J. R. Astron. Soc. 1, No 1 (1958), 92–95.

    Article  Google Scholar 

  11. F. Mainardi, G. Spada, On the viscoelastic characterization of the Jeffreys-Lomnitz law of creep. Rheol. Acta 51, No 9 (2012), 783–791.

    Article  Google Scholar 

  12. B. Ahmad, A. Alsaedi, S.K. Ntouyas, J. Tariboon, Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities. Springer International Publishing, Switzerland (2017).

    Book  Google Scholar 

  13. A.A. Kilbas, Hadamard-type fractional calculus. J. Korean Math. Soc. 38, No 6 (2001), 1191–1204.

    MathSciNet  MATH  Google Scholar 

  14. P.L. Butzer, A.A. Kilbas, J.J. Trujillo, Fractional calculus in the Mellin setting and Hadamard-type fractional integrals. J. Math. Anal. Appl. 269, No 1 (2002), 1–27.

    Article  MathSciNet  Google Scholar 

  15. M. Klimek, Sequential fractional differential equations with Hadamard derivative. Commun. Nonlinear Sci. Numer. Simul. 16, No 12 (2011), 4689–4697.

    Article  MathSciNet  Google Scholar 

  16. J.R. Wang, Y. Zhou, M. Medved’, Existence and stability of fractional differential equations with Hadamard derivative. Topol. Method. Nonlinear Anal. 41, No 1 (2013), 113–133.

    MathSciNet  MATH  Google Scholar 

  17. S. Abbas, M. Benchohra, J.E. Lazreg, Y. Zhou, A survey on Hadamard and Hilfer fractional differential equations: analysis and stability. Chaos Soliton. Fractals 102 (2017), 47–71.

    Article  MathSciNet  Google Scholar 

  18. L. Ma, C.P. Li, On Hadamard fractional calculus. Fractals 25, No 3 (2017), Art. 1750033.

    Google Scholar 

  19. Y.P. Wu, K. Yao, X. Zhang, On the Hadamard fractional calculus of a fractal function. Fractals 26, No 3 (2018), 1850025.

    Article  MathSciNet  Google Scholar 

  20. L. Ma, C.P. Li, On finite part integrals and Hadamard-type fractional derivatives. J. Comput. Nonlinear Dynam. 13, No 9 (2018), 090905.

    Google Scholar 

  21. L. Ma, Blow-up phenomena profile for Hadamard fractional differential systems in finite time. Fractals 27, No 6 (2019), 1950093.

    Google Scholar 

  22. M. Kirane, B.T. Torebek, Extremum principle for the Hadamard derivatives and its application to nonlinear fractional partial differntial equations. Fract. Calc. Appl. Anal. 22, No 2 (2019), 358–378; DOI: 10.1515/fca-2019-0022; https://www.degruyter.com/view/journals/fca/22/2/fca.22.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  23. J.R. Graef, S.R. Grace, E. Tunç, Asymptotic behavior of solutions of nonlinear fractional equations with Caputo-type Hadamard derivatives. Fract. Calc. Appl. Anal. 20, No 1 (2017), 71–87; DOI: 10.1515/fca-2017-0004; https://www.degruyter.com/view/journals/fca/20/1/fca.20.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  24. S. Abbas, M. Benchohra, N. Hamidi, J. Henderson, Caputo-Hadamard fractional differential equations in Banach spaces. Fract. Calc. Appl. Anal. 21, No 4 (2018), 1027–1045; DOI: 10.1515/fca-2018-0056; https://www.degruyter.com/view/journals/fca/21/4/fca.21.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  25. L. Ma, Comparison theorems for Caputo-Hadamard fractional differential equations. Fractals 27, No 3 (2019), Art. 1950036.

    Google Scholar 

  26. V.I. Oseledec, A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19 (1968), 197–231.

    MathSciNet  Google Scholar 

  27. C.P. Li, Z.Q. Gong, D.L. Qian, Y.Q. Chen, On the bound of the Lyapunov exponents for the fractional differential systems. Chaos 20, No 1 (2010), Art. 013127.

    Google Scholar 

  28. Z.Q. Gong, D.L. Qian, C.P. Li, P. Guo, On the Hadamard type fractional differential system. In: D. Baleanu et al. (Eds.) Fractional Dynamics and Control, 159–171. Springer, New York (2012).

    Chapter  Google Scholar 

  29. N.D. Cong, T.S. Doan, H.T. Tuan, On fractional Lyapunov exponent for solutions of linear fractional differential equations. Fract. Calc. Appl. Anal. 17, No 2 (2014), 285–306; DOI: 10.2478/s13540-014-0169-1; https://www.degruyter.com/view/journals/fca/17/2/fca.17.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  30. I. Podlubny, Fractional Differential Equations. Academic Press, New York (1999).

    MATH  Google Scholar 

  31. L. Beghin, R. Garra, C. Macci, Correlated fractional counting processes on a finite-time interval. J. Appl. Prob. 52, No 4 (2015), 1045–1061.

    Article  MathSciNet  Google Scholar 

  32. R. Garra, F. Mainardi, G. Spada, A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus. Chaos Soliton. Fractals 102 (2017), 333–338.

    Article  MathSciNet  Google Scholar 

  33. F. Mainardi, A. Mura, R. Gorenflo, M. Stojanović, The two forms of fractional relaxation of distributed order. J. Vib. Control 13, No 9 (2007), 1249–1268.

    Article  MathSciNet  Google Scholar 

  34. V. Pandey, S. Holm, Linking the fractional derivative and the lomnitz creep law to non-newtonian time-varying viscosity. Phys. Rev. E 94, No 3 (2016), Art. 032606.

    Google Scholar 

  35. W. Chen, Y.J. Liang, X.D. Hei, Structural derivative based on inverse Mittag-Leffler function for modeling ultraslow diffusion. Fract. Calc. Appl. Anal. 19, No 5 (2016), 1250–1261; DOI: 10.1515/fca-2016-0064; https://www.degruyter.com/view/journals/fca/19/5/fca.19.issue-5.xml.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Ma.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L. On the kinetics of Hadamard-type fractional differential systems. Fract Calc Appl Anal 23, 553–570 (2020). https://doi.org/10.1515/fca-2020-0027

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2020-0027

MSC 2010

Key Words and Phrases

Navigation