Skip to main content
Log in

Fractional order elliptic problems with inhomogeneous Dirichlet boundary conditions

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Fractional-order elliptic problems are investigated in case of inhomogeneous Dirichlet boundary data. The boundary integral form is proposed as a suitable mathematical model. The corresponding theory is completed by sharpening the mapping properties of the corresponding potential operators. The existence-uniqueness result is stated also for two-dimensional domains. Finally, a mild condition is provided to ensure the existence of the classical solution of the boundary integral equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Abatangelo, L. Dupaigne, Nonhomogeneous boundary conditions for the spectral fractional Laplacian. Ann. Inst. H. Poincaré Anal. Non Linéaire 34, No 2 (2017), 439–467; DOI: 10.1016/j.anihpc.2016.02.001.

    Article  MathSciNet  Google Scholar 

  2. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. U.S. Government Printing Office, Washington, D.C., (1964).

    MATH  Google Scholar 

  3. G. Acosta, J.P. Borthagaray, A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55, No 2 (2017), 472–495; DOI: 10.1137/15M1033952.

    Article  MathSciNet  Google Scholar 

  4. H. Antil, and J. Pfefferer, S. Rogovs, Fractional operators with inhomogeneous boundary bonditions: analysis, control, and discretization. Comm. Math. Sci. 16, No 5 (2018), 1395–1426; DOI: 10.4310/CMS.2018.v16.n5.a11.

    Article  Google Scholar 

  5. B. Baeumer, M. Kovács, M.M. Meerschaert, H. Sankaranarayanan, Boundary conditions for fractional diffusion. J. Comput. Appl. Math. 336 (2018), 408–424; DOI: 10.1016/j.cam.2017.12.053.

    Article  MathSciNet  Google Scholar 

  6. T. Chang, Boundary integral operator for the fractional Laplace equation in a bounded Lipschitz domain. Integr. Equat. Oper. Th. 72, No 3 (2012), 345–361; DOI: 10.1007/s00020-012-1945-0.

    Article  MathSciNet  Google Scholar 

  7. Q. Du, M. Gunzburger, R. B. Lehoucq, K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math. Mod. Meth. Appl. Sci. 23, No 3 (2013), 493–540; DOI: 10.1142/S0218202512500546.

    Article  MathSciNet  Google Scholar 

  8. F. Izsák, B.J. Szekeres, Models of space-fractional diffusion: a critical review. Appl.Math. Lett. 71 (2017), 38–43; DOI: 10.1016/j.aml.2017.03.006.

    Article  MathSciNet  Google Scholar 

  9. V. Kokilashvili, M. Mastyło, A. Meskhi, Compactness criteria for fractional integral operators. Fract. Calc. Appl. Anal. 22, No 5 (2019), 1269–1283; DOI: 10.1515/fca-2019-0067; https://www.degruyter.com/view/j/fca.2019.22.issue-5/issue-files/fca.2019.22.issue-5.xml.

    Article  MathSciNet  Google Scholar 

  10. M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20, No 1 (2017), 7–51; DOI: 10.1515/fca-2017-0002; https://www.degruyter.com/view/j/fca.2017.20.issue-1/issue-files/fca.2017.20.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  11. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000).

    MATH  Google Scholar 

  12. B.J. Szekeres, F. Izsák, A finite difference method for fractional diffusion equations with Neumann boundary conditions. Open Math. 13 (2015), 581–600; DOI: 10.1515/math-2015-0056.

    Article  MathSciNet  Google Scholar 

  13. P.N. Vabishchevich, Numerical solution of nonstationary problems for space-fractional diffusion equation. Fract. Calc. Appl. Anal. 19, No 1 (2016), 116–139; DOI: 10.1515/fca-2016-0007; https://www.degruyter.com/view/j/fca.2016.19.issue-1/issue-files/fca.2016.19.issue-1.xml.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferenc Izsák.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izsák, F., Maros, G. Fractional order elliptic problems with inhomogeneous Dirichlet boundary conditions. Fract Calc Appl Anal 23, 378–389 (2020). https://doi.org/10.1515/fca-2020-0018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2020-0018

MSC 2010

Key Words and Phrases

Navigation