Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 20, 2020

Using macroalgae as biofuel: current opportunities and challenges

  • Guang Gao

    Guang Gao received his PhD at Newcastle University, UK. He is an associate professor at Xiamen University. He is working on the interaction between marine primary producers and environmental changes, referring to algal use in food, biofuel and bioremediation for CO2 rise and eutrophication.

    EMAIL logo
    , James Grant Burgess

    James Grant Burgess received his PhD at Imperial College, University of London. He is a professor of marine biotechnology at Newcastle University, UK. He is interested in novel bioactive compounds from marine bacteria, chemical defense in marine microbes, antifouling compounds from marine bacteria, microbiology of deep sea sediments, and sponge microbiology.

    , Min Wu

    Min Wu is a postgraduate student at Jiangsu Ocean University. She is working on biofuel and bioactive compounds from microalgae.

    , Shujun Wang

    Shunjun Wang received her PhD at Nanjing Agricultural University, China. She is a professor at Jiangsu Ocean University. Her research fields are marine microbiology and bioactive compounds from marine organisms.

    and Kunshan Gao

    Kunshan Gao obtained his PhD at Kyoto University, Japan. He is currently a chair professor at Xiamen University, China. His research focuses on physiological ecology and photobiology of phytoplankton, with special reference to the interactive effects of CO2 rise (and associated ocean acidification) and solar UV radiation on aquatic primary producers.

    EMAIL logo
From the journal Botanica Marina

Abstract

The rising global demand for energy and the decreasing stocks of fossil fuels, combined with environmental problems associated with greenhouse gas emissions, are driving research and development for alternative and renewable sources of energy. Algae have been gaining increasing attention as a potential source of bio-renewable energy because they grow rapidly, and farming them does not, generally, compete for agricultural land use. Previous studies of algal biofuels have focused on microalgae because of their fast growth rate and high lipid content. Here we analyze the multiple merits of biofuel production using macroalgae, with particular reference to their chemical composition, biomass and biofuel productivity, and cost-effectiveness. Compared to microalgae, macroalgae have lower growth rates and energy productivity but higher cost-effectiveness. A biomass productivity of over 73.5 t dry mass ha−1 year−1 with a methane yield of 285 m3 t−1 dry mass would make electricity production from macroalgae profitable, and this might be achieved using fast-growing macroalgae, such as Ulva. Taking into account the remediation of eutrophication and CO2, exploring macroalgae for a renewable bioenergy is of importance and feasible.

About the authors

Guang Gao

Guang Gao received his PhD at Newcastle University, UK. He is an associate professor at Xiamen University. He is working on the interaction between marine primary producers and environmental changes, referring to algal use in food, biofuel and bioremediation for CO2 rise and eutrophication.

James Grant Burgess

James Grant Burgess received his PhD at Imperial College, University of London. He is a professor of marine biotechnology at Newcastle University, UK. He is interested in novel bioactive compounds from marine bacteria, chemical defense in marine microbes, antifouling compounds from marine bacteria, microbiology of deep sea sediments, and sponge microbiology.

Min Wu

Min Wu is a postgraduate student at Jiangsu Ocean University. She is working on biofuel and bioactive compounds from microalgae.

Shujun Wang

Shunjun Wang received her PhD at Nanjing Agricultural University, China. She is a professor at Jiangsu Ocean University. Her research fields are marine microbiology and bioactive compounds from marine organisms.

Kunshan Gao

Kunshan Gao obtained his PhD at Kyoto University, Japan. He is currently a chair professor at Xiamen University, China. His research focuses on physiological ecology and photobiology of phytoplankton, with special reference to the interactive effects of CO2 rise (and associated ocean acidification) and solar UV radiation on aquatic primary producers.

Acknowledgements

This study was supported by the National key R&D program of China (2016YFA0601400), the Lianyungang Innovative and Entrepreneurial Doctor Program (201702), the Jiangsu Planned Projects for Postdoctoral Research Funds (1701003A), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX19_0951), and the Priority Academic Program Development of Jiangsu Higher Education Institutions of China.

References

Abomohra, A., W. Jin, R. Tu and S. Han. 2016. Outdoor cultivation of the biodiesel promising microalga Scenedesmus obliquus in municipal wastewater: a case study. Renew. Energ. Res. 1: 17–23.10.1016/j.enconman.2015.11.007Search in Google Scholar

Abomohra, A.E.-F., A.H. El-Naggar and A.A. Baeshen. 2018. Potential of macroalgae for biodiesel production: Screening and evaluation studies. J. Biosci. Bioeng. 125: 231–237.10.1016/j.jbiosc.2017.08.020Search in Google Scholar PubMed

Adeniyi, O.M., U. Azimov and A. Burluka. 2018. Algae biofuel: current status and future applications. Renew. Sust. Energy Rev. 90: 316–335.10.1016/j.rser.2018.03.067Search in Google Scholar

Aitken, D., C. Bulboa, A. Godoyfaundez, J.L. Turriongomez and B. Antizarladislao. 2014. Life cycle assessment of macroalgae cultivation and processing for biofuel production. J. Clean. Prod. 75: 45–56.10.1016/j.jclepro.2014.03.080Search in Google Scholar

Ajjawi, I., J. Verruto, M. Aqui, L.B. Soriaga, J. Coppersmith, K. Kwok, L. Peach, E. Orchard, R. Kalb and W. Xu. 2017. Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nat. Biotechnol. 35: 647–655.10.1038/nbt.3865Search in Google Scholar PubMed

Aléman-Nava, G.S., K. Muylaert, S.P.C. Bermudez, O. Depraetere, B. Rittmann, R. Parra-Saldívar and D. Vandamme. 2017. Two-stage cultivation of Nannochloropsis oculata for lipid production using reversible alkaline flocculation. Bioresour. Technol. 226: 18–23.10.1016/j.biortech.2016.11.121Search in Google Scholar PubMed

Al-Hafedh, Y.S., A. Alam and A.H. Buschmann. 2015 Bioremediation potential, growth and biomass yield of the green seaweed, Ulva lactuca in an integrated marine aquaculture system at the Red Sea coast of Saudi Arabia at different stocking densities and effluent flow rates. Rev. Aquacult. 7: 161–171.10.1111/raq.12060Search in Google Scholar

Anastasakis, K and A.B. Ross. 2011. Hydrothermal liquefaction of the brown macro-alga Laminaria Saccharina: Effect of reaction conditions on product distribution and composition. Bioresour. Technol. 102: 4876–4883.10.1016/j.biortech.2011.01.031Search in Google Scholar PubMed

Anastasakis, K and A.B. Ross. 2015. Hydrothermal liquefaction of four brown macro-algae commonly found on the UK coasts: an energetic analysis of the process and comparison with biochemical conversion methods. Fuel 139: 139546–139553.10.1016/j.fuel.2014.09.006Search in Google Scholar

Astals, S., R.S. Musenze, X. Bai, S. Tannock, S. Tait, S. Pratt and P.D. Jensen. 2015. Anaerobic co-digestion of pig manure and algae: impact of intracellular algal products recovery on co-digestion performance. Bioresour. Technol. 181: 97–104.10.1016/j.biortech.2015.01.039Search in Google Scholar PubMed

Balat, M. 2008. Mechanisms of thermochemical biomass conversion processes. Part 3: reactions of liquefaction. Energy Sources Part A 30: 649–659.10.1080/10407780600817592Search in Google Scholar

Batan, L.Y., G.D. Graff and T.H. Bradley. 2016. Techno-economic and Monte Carlo probabilistic analysis of microalgae biofuel production system. Bioresour. Technol. 219: 45–52.10.1016/j.biortech.2016.07.085Search in Google Scholar

Benavides, A.M.S., K. Ranglová, J.R. Malapascua, J. Masojídek and G. Torzillo. 2017. Diurnal changes of photosynthesis and growth of Arthrospira platensis cultured in a thin-layer cascade and an open pond. Algal Res. 28: 48–56.10.1016/j.algal.2017.10.007Search in Google Scholar

Bidwell, R.G.S., J. McLachlan and N.D.H. Lloyd. 1985. Tank cultivation of Irish moss, Chondrus crispus Stackh. Bot. Mar. 28: 87–98.10.1515/botm.1985.28.3.87Search in Google Scholar

Borines, M.G., R.L. de Leon, and J.L. Cuello. 2013. Bioethanol production from the macroalgae Sargassum spp. Bioresour. Technol. 138: 22–29.10.1016/j.biortech.2013.03.108Search in Google Scholar

Borowitzka, M.A. 2013. High-value products from microalgae – their development and commercialisation. J. Appl. Phycol. 25: 743–756.10.1007/s10811-013-9983-9Search in Google Scholar

Borowitzka, M.A. and A. Vonshak. 2017. Scaling up microalgal cultures to commercial scale. Eur. J. Phycol. 52: 407–418.10.1080/09670262.2017.1365177Search in Google Scholar

Börjesson, P. and B. Mattiasson. 2008. Biogas as a resource-efficient vehicle fuel. Trends Biotechnol. 26: 7–13.10.4324/9781315793245-101Search in Google Scholar

Bruhn, A., J. Dahl, H.B. Nielsen, L. Nikolaisen, M.B. Rasmussen, S. Markager, B. Olesen, C. Arias and P.D. Jensen. 2011. Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion. Bioresour. Technol. 102: 2595–2604.10.1016/j.biortech.2010.10.010Search in Google Scholar

Buschmann, A.H., O.A. Mora, P. Gómez, M. Böttger, S. Buitano, C. Retamales, P.A. Vergara and A. Gutierrez. 1994. Gracilaria chilensis outdoor tank cultivation in Chile: use of land-based salmon culture effluents. Aquacult. Eng. 13: 283–300.10.1016/0144-8609(94)90016-7Search in Google Scholar

Buysman, E. 2009. Anaerobic digestion for developing countries with cold climates. Master thesis, Faculty of Environmental Sciences, University of Wageningen, Netherlands.Search in Google Scholar

Bwapwa, J.K., A. Anandraj and C. Trois. 2017. Possibilities for conversion of microalgae oil into aviation fuel: a review. Renew. Sust. Energ. Rev. 80: 1345–1354.10.1016/j.rser.2017.05.224Search in Google Scholar

Camus, C., P. Ballerino, R. Delgado, Á. Olivera-Nappa, C. Leyton and A.H. Buschmann. 2016. Scaling up bioethanol production from the farmed brown macroalga Macrocystis pyrifera in Chile. Biofuel. Bioprod. Bior. 10: 673–685.10.1002/bbb.1708Search in Google Scholar

Camus, C., J. Infante, and A.H. Buschmann. 2018. Overview of 3 year precommercial seafarming of Macrocystis pyrifera along the Chilean coast. Rev. Aquacult. 10: 543–559.10.1111/raq.12185Search in Google Scholar

Carl, C., R.J. Lawton, N.A. Paul and R. de Nys. 2016. Reproductive output and productivity of filamentous tropical Ulva over time. J. Appl. Phycol. 28: 429–438.10.1007/s10811-015-0589-2Search in Google Scholar

Chan, P.T. and P. Matanjun. 2017. Chemical composition and physicochemical properties of tropical red seaweed, Gracilaria changii. Food Chem. 221: 302–310.10.1016/j.foodchem.2016.10.066Search in Google Scholar PubMed

Chaumont, D., C. Thepenier, C. Gudin and C. Junjas. 1988. Scaling up a tubular photoreactor for continuous culture of Porphyridium cruentum from laboratory to pilot plant (1981–1987). In: (T. Stadler, J. Mollion M.-C. Verdus, Y. Karamanos, H. Morvan and D. Christiaen, eds.) Algal biotechnology. Elsevier, New York. pp. 199–208.Search in Google Scholar

Chen, Y., J. Wang, W. Zhang, L. Chen, L. Gao and T. Liu. 2013. Forced light/dark circulation operation of open pond for microalgae cultivation. Biomass Bioenergy 56: 464–470.10.1016/j.biombioe.2013.05.034Search in Google Scholar

Chen, W.T., Y. Zhang, J. Zhang, G. Yu, L.C. Schideman, P. Zhang and M. Minarick. 2014. Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil. Bioresour. Technol. 152: 130–139.10.1016/j.biortech.2013.10.111Search in Google Scholar PubMed

Chen, H., D. Zhou, G. Luo, S. Zhang and J. Chen. 2015. Macroalgae for biofuels production: Progress and perspectives. Renew. Sustain. Energy Rev. 47: 427–437.10.1016/j.rser.2015.03.086Search in Google Scholar

Cheng, F., Z. Cui, L. Chen, J. Jarvis, N. Paz, T. Schaub, N. Nirmalakhandan and C.E. Brewer. 2017. Hydrothermal liquefaction of high-and low-lipid algae: bio-crude oil chemistry. Appl. Energy 206: 278–292.10.1016/j.apenergy.2017.08.105Search in Google Scholar

China Fishery Statistical Yearbook (CFSY). 2017. China Agriculture Press, Beijing.Search in Google Scholar

Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25: 294–306.10.1016/j.biotechadv.2007.02.001Search in Google Scholar PubMed

Correa, T., A. Gutiérrez, R. Flores, A.H. Buschmann, P. Cornejo and C. Bucarey. 2016. Production and economic assessment of giant kelp Macrocystis pyrifera cultivation for abalone feed in the south of Chile. Aquac. Res. 47: 698–707.10.1111/are.12529Search in Google Scholar

Chung, I.K., J. Beardall, S. Mehta, D. Sahoo and S. Stojkovic. 2011. Using marine macroalgae for carbon sequestration: a critical appraisal. J. Appl. Phycol. 23: 877–886.10.1007/s10811-010-9604-9Search in Google Scholar

Chynoweth, D.P. 2002. Review of biomethane from marine biomass. History, results and conclusions of the “US Marine Biomass Energy Program”(1968–1990) Gainsville: Department of Agricultural and Biological Engineering, University of Florida. pp. 194.Search in Google Scholar

Duarte, C.M., I.J. Losada, I.E. Hendriks, I. Mazarrosa and N. Marbà. 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change 3: 961–968.10.1038/nclimate1970Search in Google Scholar

Duarte, C.M., J. Wu, X. Ciao, A. Bruin and D. Krause-Jensen. 2017. Can seaweed farming play a role in climate mitigation and adaptation? Front. Mar. Sci. 4: 100.10.3389/fmars.2017.00100Search in Google Scholar

Dudley, B. 2018. BP statistical review of world energy. BP Statistical Review London, UK.Search in Google Scholar

Dudley, B. 2019. BP statistical review of world energy. BP Statistical Review London, UK.Search in Google Scholar

Dave, A., Y. Huang, S. Rezvani, D. Mcilveen-Wright, M. Novaes and N. Hewitt. 2013. Techno-economic assessment of biofuel development by anaerobic digestion of European arine cold-water seaweeds. Bioresour. Technol. 135: 120–127.10.1016/j.biortech.2013.01.005Search in Google Scholar PubMed

Dave, N., R. Selvaraj, T. Varadavenkatesan and R. Vinayagam. 2019. A critical review on production of bioethanol from macroalgal biomass. Algal Res. 42: 101606.10.1016/j.algal.2019.101606Search in Google Scholar

Davis, R., A. Aden and P.T. Pienkos. 2011. Techno-economic analysis of autotrophic microalgae for fuel production. Appl. Energy 88: 3524–3531.10.1016/j.apenergy.2011.04.018Search in Google Scholar

Davis, R., C. Kinchin, J. Markham, E. Tan, L. Laurens, D. Sexton, D. Knorr, P. Schoen and J. Lukas. 2014. Process design and economics for the conversion of algal biomass to biofuels: algal biomass fractionation to lipid- and carbohydrate-derived fuel products. Golden, CO, USA10.2172/1159351Search in Google Scholar

Demirbas, A. 2010. Use of algae as biofuel sources. Energy Convers. Manage. 51: 2738–2749.10.1016/j.enconman.2010.06.010Search in Google Scholar

de Boer, K., N.R. Moheimani, M.A. Borowitzka and P.A. Bahri. 2012. Extraction and conversion pathways for microalgae to biodiesel: a review focused on energy consumption. J. Appl. Phycol. 24: 1681–1698.10.1007/s10811-012-9835-zSearch in Google Scholar

de Mooij, T., G. de Vries, C. Latsos, R.H. Wijffels and M. Janssen. 2016. Impact of light color on photobioreactor productivity. Algal Res. 15: 32–42.10.1016/j.algal.2016.01.015Search in Google Scholar

Dickinson, S., M. Mientus, D. Frey, A. Amini-Hajibashi, S. Ozturk, F. Shaikh, D. Sengupta and M.M. El-Halwagi. 2017. A review of biodiesel production from microalgae. Clean Technol. Environ. 19: 637–668.10.1007/s10098-016-1309-6Search in Google Scholar

Diprat, A.B., T. Menegol, J.F. Boelter, A. Zmozinski, M.G. Rodrigues Vale, E. Rodrigues and R. Rech. 2017. Chemical composition of microalgae Heterochlorella luteoviridis and Dunaliella tertiolecta with emphasis on carotenoids. J. Sci. Food Agric. 97: 3463–3468.10.1002/jsfa.8159Search in Google Scholar PubMed

Doucha, J. and K. Lívanský. 2006. Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J. Appl. Phycol. 18: 811–826.10.1007/s10811-006-9100-4Search in Google Scholar

Doucha, J., F. Straka and K. Lívanský. 2005. Utilization of flue gas for cultivation of microalgae Chlorella sp.) in an outdoor open thin-layer photobioreactor. J. Appl. Phycol. 17: 403–412.10.1007/s10811-005-8701-7Search in Google Scholar

El-Mashad, H.M. 2015. Biomethane and ethanol production potential of Spirulina platensis algae and enzymatically saccharified switchgrass. Biochem. Eng. J. 93: 119–127.10.1016/j.bej.2014.09.009Search in Google Scholar

Energy Statistics Database – United Nations Statistics Division, 2019.Search in Google Scholar

Enquist-Newman, M., A.M.E. Faust, D.D. Bravo, C.N.S. Santos, R.M. Raisner, A. Hanel, P. Sarvabhowman, C. Le, D.D. Regitsky, S.R. Cooper and L. Peereboom. 2014. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature 505: 239–246.10.1038/nature12771Search in Google Scholar PubMed

Fasaei, F., J.H. Bitter, P.M. Slegers and A.J.B.V. Boxtel. 2018. Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Res. 31: 347–362.10.1016/j.algal.2017.11.038Search in Google Scholar

Foteinis, S., A. Antoniadis-Gavriil and T. Tsoutsos. 2018. Life cycle assessment of algae-to-biodiesel shallow pond production systems in the Mediterranean: influence of species, pond type, by (co)-product valorisation and electricity mix. Biofuel Bioprod Bior. 12: 542–558.10.1002/bbb.1871Search in Google Scholar

Gao, K. and K.R. McKinley. 1994. Use of macroalgae for marine biomass production and CO2 remediation: a review. J. Appl. Phycol. 6: 45–60.10.1007/BF02185904Search in Google Scholar

Gao, G., Y. Liu, X. Li, Z. Feng, and J. Xu. 2016a. An ocean acidification acclimatised green tide alga is robust to changes of seawater carbon chemistry but vulnerable to light stress. PLoS One 11: 0169040.10.1371/journal.pone.0169040Search in Google Scholar PubMed PubMed Central

Gao, G., Z. Zhong, X. Zhou and J. Xu. 2016b. Changes in morphological plasticity of Ulva prolifera under different environmental conditions: a laboratory experiment. Harmful Algae 59: 51–58.10.1016/j.hal.2016.09.004Search in Google Scholar PubMed

Gao, G., A.S. Clare, C. Rose and G.S. Caldwell. 2017a. Eutrophication and warming-driven green tides (Ulva rigida) are predicted to increase under future climate change scenarios. Mar. Pollut. Bull. 114: 439–447.10.1016/j.marpolbul.2016.10.003Search in Google Scholar PubMed

Gao, G., A.S. Clare, C. Rose and G.S. Caldwell. 2017b. Intrinsic and extrinsic control of reproduction in the green tide-forming alga, Ulva rigida. Environ. Exp. Bot. 139: 14–22.10.1016/j.envexpbot.2017.03.016Search in Google Scholar

Gao, G., A.S. Clare, C. Rose and G.S. Caldwell. 2017c. Reproductive sterility increases the capacity to exploit the green seaweed Ulva rigida for commercial applications. Algal Res. 24: 64–71.10.1016/j.algal.2017.03.008Search in Google Scholar

Gao, G., A.S. Clare, E. Chatzidimitriou, C. Rose and G. Caldwell. 2018a. Effects of ocean warming and acidification, combined with nutrient enrichment, on chemical composition and functional properties of Ulva rigida. Food Chem. 258: 71–78.10.1016/j.foodchem.2018.03.040Search in Google Scholar PubMed

Gao, G., J. Beardall, M. Bao, C. Wang, W. Ren and J. Xu. 2018b. Ocean acidification and nutrient limitation synergistically reduce growth and photosynthetic performances of a green tide alga Ulva linza. Biogeosciences 15: 3409–3420.10.5194/bg-15-3409-2018Search in Google Scholar

Gao, G., A.S. Clare, C. Rose and G.S. Caldwell. 2018c. Ulva rigida in the future ocean: potential for carbon capture, bioremediation, and biomethane production. G. C. B. Bioenergy 10: 39–51.10.1111/gcbb.12465Search in Google Scholar

Gao, G., M. Wu, Q. Fu, X. Li and J. Xu. 2019. A two-stage model with nitrogen and silicon limitation enhances lipid productivity and biodiesel features of the marine bloom-forming diatom Skeletonema costatum. Bioresour. Technol. 289: 121717.10.1016/j.biortech.2019.121717Search in Google Scholar PubMed

Gao, S., X. Chen, Q. Yi, G. Wang, G. Pan, A. Lin and G. Peng. 2010. A strategy for the proliferation of Ulva prolifera, main causative species of green tides, with formation of sporangia by fragmentation. PLoS One 5: e8571.10.1371/journal.pone.0008571Search in Google Scholar PubMed PubMed Central

Ghadiryanfar, M., K.A. Rosentrater, A. Keyhani and M. Omid. 2016. A review of macroalgae production, with potential applications in biofuels and bioenergy. Renew. Sustain. Energy Rev. 54: 473–54481.10.1016/j.rser.2015.10.022Search in Google Scholar

Gressel, J. 2008. Transgenics are imperative for biofuel crops. Plant Sci. 174: 246–263.10.1016/j.plantsci.2007.11.009Search in Google Scholar

Han, T., Y.S. Han, J.M. Kain and D.P. Häder. 2003. Thallus differentiation of photosynthesis, growth, reproduction, and UV-B sensitivity in the green alga Ulva pertusa (Chlorophyceae). J. Phycol. 39: 712–721.10.1046/j.1529-8817.2003.02155.xSearch in Google Scholar

Hansson, G. 1983. Methane production from marine, green macro-algae. Resour. Conserv. 8: 185–194.10.1016/0166-3097(83)90024-XSearch in Google Scholar

Harun, R., M. Davidson, M. Doyle, R. Gopiraj, M. Danquah and G. Forde. 2011. Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility. Biomass Bioenerg. 35: 741–747.10.1016/j.biombioe.2010.10.007Search in Google Scholar

Hein, M., M. Pedersen and K. Sand-Jensen. 2014. Size-dependent nitrogen uptake in micro- and macroalgae. Mar. Ecol. Prog. Ser. 118: 247–253.10.3354/meps118247Search in Google Scholar

Herrmann, R., C. Jumbe, M. Bruentrup and E. Osabuohien. 2018. Competition between biofuel feedstock and food production: Empirical evidence from sugarcane outgrower settings in Malawi. Biomass Bioenerg. 114: 100–111.10.1016/j.biombioe.2017.09.002Search in Google Scholar

Hoffman, J., R.C. Pate, T. Drennen and J.C. Quinn. 2017. Techno-economic assessment of open microalgae production systems. Algal Res. 23: 51–57.10.1016/j.algal.2017.01.005Search in Google Scholar

Hong, I.K., H. Jeon and S.B. Lee. 2014. Comparison of red, brown and green seaweeds on enzymatic saccharification process. J. Ind. Eng. Chem. 20: 2687–2691.10.1016/j.jiec.2013.10.056Search in Google Scholar

Horn, S.J. 2000. Bioenergy from brown seaweeds. PhD thesis. Department of Biotechnology, Norwegian University of Science and Technology.Search in Google Scholar

Hu, Q., H. Guterman and A. Richmond. 1996. A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnol. Bioeng. 51: 51–60.10.1002/(SICI)1097-0290(19960705)51:1<51::AID-BIT6>3.0.CO;2-#Search in Google Scholar

Ishika, T., P.A. Bahri, D.W. Laird and N.R. Moheimani. 2018. The effect of gradual increase in salinity on the biomass productivity and biochemical composition of several marine, halotolerant, and halophilic microalgae. J. Appl. Phycol. 30: 1453–1464.10.1007/s10811-017-1377-ySearch in Google Scholar

Jang, S-S., Y. Shirai., M. Uchida and M. Wakisaka. 2012. Production of mono sugar from acid hydrolysis of seaweed. Afr. J. Biotechnol. 11: 1953–1963.10.5897/AJB10.1681Search in Google Scholar

Jiang, X., Q. Han, X. Gao and G. Gao. 2016. Conditions optimising on the yield of biomass, total lipid, and valuable fatty acids in two strains of Skeletonema menzelii. Food Chem. 194: 723–732.10.1016/j.foodchem.2015.08.073Search in Google Scholar

Jiménez, C., B.R. Cossı́o, D. Labella and F. Xavier Niell. 2003. The Feasibility of industrial production of Spirulina (Arthrospira) in Southern Spain. Aquaculture 217: 179–190.10.1016/S0044-8486(02)00118-7Search in Google Scholar

Jung, K.A., S.R. Lim, Y. Kim and J.M. Park. 2013. Potentials of macroalgae as feedstocks for biorefinery. Bioresour. Technol. 135: 182–190.10.1016/j.biortech.2012.10.025Search in Google Scholar PubMed

Jung, K.A., S.R. Lim, Y. Kim and J.M. Park. 2016. Opportunity and challenge of seaweed bioethanol based on life cycle CO2 assessment. Environ. Prog. Sustain. Energy 36: 200–207.10.1002/ep.12446Search in Google Scholar

Kalita, N., G. Baruah, R. Chandra, D. Goswami, J. Talukdar and M.C. Kalita. 2017. Ankistrodesmus falcatus: a promising candidate for lipid production, its biochemical analysis and strategies to enhance lipid productivity. J. Microbiol. Biotechnol. Res. 1: 148–157.Search in Google Scholar

Khanam, M.R.M., Y. Shimasaki, M.Z. Hosain, K. Mukai, M. Tsuyama, X. Qiu, R. Tasmin, H. Goto and Y. Oshima. 2017. Diuron causes sinking retardation and physiochemical alteration in marine diatoms Thalassiosira pseudonana and Skeletonema marinoi-dohrnii complex. Chemosphere 175: 200–209.10.1016/j.chemosphere.2017.02.054Search in Google Scholar PubMed

Khatoon, H., N.A. Rahman, S. Banerjee, N. Harun, S.S. Suleiman, N.H. Zakaria, F. Lananan, S.H.A. Hamid and A. Endut. 2014. Effects of different salinities and pH on the growth and proximate composition of Nannochloropsis sp. and Tetraselmis sp. isolated from South China Sea cultured under control and natural condition. Int. Biodeter. Biodegr. 95: 11–18.10.1016/j.ibiod.2014.06.022Search in Google Scholar

Khuong, L.S., H.H. Masjuki, N.W.M. Zulkifli, E. Niza Mohamad, M.A. Kaiam, A. Alabdulkarem, A. Arslan, M.H. Mosarof, A.Z. Syahir and M. Jamshaid. 2017. Effect of gasoline–bioethanol blends on the properties and lubrication characteristics of commercial engine oil. RSC Adv. 7: 15005–15019.10.1039/C7RA00357ASearch in Google Scholar

Kim, N.-J., H. Li, K. Jung, H.N. Chang and P.C. Lee. 2011. Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour. Technol. 102: 7466–7469.10.1016/j.biortech.2011.04.071Search in Google Scholar PubMed

Kiyasudeen, K., M.H. Ibrahim, S. Quaik, and S.A. Ismail. 2016. An introduction to anaerobic digestion of organic wastes. In: (K. Kiyasudeen, M.H. Ibrahim, S. Quaik and S.A. Ismail, eds.) Prospects of organic waste management and the significance of earthworm. Springer, Cham. pp. 23–44.Search in Google Scholar

Kraan, S. 2010. Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig. Adapt. Strat. Gl. 18: 27–46.10.1007/s11027-010-9275-5Search in Google Scholar

Kruse, A. and E. Dinjus. 2007. Hot compressed water as reaction medium and reactant: properties and synthesis reactions. J. Supercrit. Flu. 39: 362–380.10.1016/j.supflu.2006.03.016Search in Google Scholar

Landis, D.A., C. Gratton, R.D. Jackson, K.L. Gross, D.S. Duncan, C. Liang, T.D. Meehan, B.A. Robertson, T.M. Schmidt and K.A. Stahlheber. 2017. Biomass and biofuel crop effects on biodiversity and ecosystem services in the North Central US. Biomass Bioenergy 114: 18–29.10.1016/j.biombioe.2017.02.003Search in Google Scholar

Laramore, S., R. Baptiste and D.H. Wills P S. 2018. Utilization of IMTA-produced Ulva lactuca to supplement or partially replace pelleted diets in shrimp (Litopenaeus vannamei) reared in a clear water production system. J. Appl. Phycol. 30: 3603–3610.10.1007/s10811-018-1485-3Search in Google Scholar

Laws, E.A., S. Taguchi, J. Hirata and L. Pang. 1986. High algal production rates achieved in a shallow outdoor flume. Biotechnol. Bioeng. 28: 191–197.10.1002/bit.260280207Search in Google Scholar PubMed

Laws, E.A., S. Taguchi, J. Hirata and L. Pang. 1988. Optimization of microalgal production in a shallow outdoor flume. Biotechnol. Bioeng. 32: 140–147.10.1002/bit.260320204Search in Google Scholar PubMed

Lee, Y.K. and C.S. Low. 1991. Effect of photobioreactor inclination on the biomass productivity of an outdoor algal culture. Biotechnol. Bioeng. 38: 995–1000.10.1002/bit.260380906Search in Google Scholar PubMed

Lee, Y.K., S.Y. Ding, C.S. Low, Y.C. Chang, W.L. Forday and P.C. Chew. 1995. Design and performance of an α-type tubular photobioreactor for mass cultivation of microalgae. J. Appl. Phycol. 7: 47–51.10.1007/BF00003549Search in Google Scholar

Lee, W.K., Y.Y. Lim, A.T. Leow, P. Namasivayam, A.J. Ong and C.L. Ho. 2017. Biosynthesis of agar in red seaweeds: a review. Carbohyd. Polym. 164: 23–30.10.1016/j.carbpol.2017.01.078Search in Google Scholar PubMed

Li, D., L. Chen, D. Xu, X. Zhang, N. Ye, F. Chen, and S. Chen. 2012. Preparation and characteristics of bio-oil from the marine brown alga Sargassum patens C. Agardh. Bioresour. Technol. 104: 737–742.10.1016/j.biortech.2011.11.011Search in Google Scholar PubMed

Liu, J., Y. Zhuang, Y. Li, L. Chen, J. Guo, D. Li and N. Ye. 2013. Optimizing the conditions for the microwave-assisted direct liquefaction of Ulva prolifera for bio-oil production using response surface methodology. Energy 60: 69–76.10.1016/j.energy.2013.07.060Search in Google Scholar

Madhu, N.V., G.D. Martin, C.K. Haridevi, M. Nair, K.K. Balachandran and N. Ullas. 2017. Differential environmental responses of tropical phytoplankton community in the southwest coast of India. Reg. Stud. Mar. Sci. 16: 21–35.10.1016/j.rsma.2017.07.004Search in Google Scholar

Magnusson, M., C.R. Glasson, M.J. Vucko, A. Angell, T.L. Neoh and R. de Nys. 2019. Enrichment processes for the production of high-protein feed from the green seaweed Ulva ohnoi. Algal Res 41: 101555.10.1016/j.algal.2019.101555Search in Google Scholar

Mata, T.M., A.A. Martins and N.S. Caetano. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sust. Energy Rev. 14: 217–232.10.1016/j.rser.2009.07.020Search in Google Scholar

Mata, L., M. Magnusson, N.A. Paul and R. de Nys. 2016. The intensive land-based production of the green seaweeds Derbesia tenuissima and Ulva ohnoi: biomass and bioproducts. J. Appl. Phycol. 28: 365–375.10.1007/s10811-015-0561-1Search in Google Scholar

Mathimani, T., A. Baldinelli, K. Rajendran, D. Prabakar, M. Matheswaran, R.P. van Leeuwen and A. Pugazhendhi. 2019. Review on cultivation and thermochemical conversion of microalgae to fuels and chemicals: process evaluation and knowledge gaps. J. Clean. Prod. 208: 1053–1064.10.1016/j.jclepro.2018.10.096Search in Google Scholar

Matsumoto, M., D. Nojima, T. Nonoyama, K. Ikeda, Y. Maeda, T. Yoshino and T. Tanaka. 2017. Outdoor cultivation of marine diatoms for year-round production of biofuels. Mar. Drugs 15: 1–12.10.3390/md15040094Search in Google Scholar PubMed PubMed Central

Meinita, M.D.N., B. Marhaeni, T. Winanto, G.T. Jeong, M.N.A. Khan and Y.K. Hong. 2013. Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis) as potential resources for bioethanol production. J. Appl. Phycol. 25: 1957–1961.10.1007/s10811-013-0041-4Search in Google Scholar

Melis, A. 2009. Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci. 177: 272–280.10.1016/j.plantsci.2009.06.005Search in Google Scholar

Milledge, J. and P. Harvey. 2016. Golden tides: problem or golden opportunity? The valorisation of Sargassum from beach inundations. J. Mar. Sci. Engineer. 4: 1–19.10.3390/jmse4030060Search in Google Scholar

Milledge, J., B. Smith, P. Dyer and P. Harvey. 2014. Macroalgae-derived biofuel: a review of methods of energy extraction from seaweed biomass. Energies 7: 7194–7222.10.3390/en7117194Search in Google Scholar

Montingelli, M.E., K.Y. Benyounis, J. Stokes and A.G. Olabi. 2016. Pretreatment of macroalgal biomass for biogas production, Energy Convers. Manage. 108: 202–209,10.1016/j.enconman.2015.11.008Search in Google Scholar

Mooy, B.A.S.V., H.F. Fredricks, B.E. Pedler, S.T. Dyhrman, D.M. Karl, M. Koblížek, M.W. Lomas, T.J. Mincer, L.R. Moore and T. Moutin. 2009. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458: 69–72.10.1038/nature07659Search in Google Scholar

Moreno, J., M. Vargas, H. Rodrı́guez, J. Rivas and M.G. Guerrero. 2003. Outdoor cultivation of a nitrogen-fixing marine cyanobacterium, Anabaena sp. ATCC 33047. Biomol. Eng. 20: 191–197.10.1016/S1389-0344(03)00051-0Search in Google Scholar

Nagarajan, S., S.K. Chou, S. Cao, C. Wu and Z. Zhou. 2013. An updated comprehensive techno-economic analysis of algae biodiesel. Bioresour. Technol. 145: 150–156.10.1016/j.biortech.2012.11.108Search in Google Scholar PubMed

Narala, R.R., S, Garg, K.K. Sharma, S.R. Thomas-Hall, M. Deme, Y. Li and P.M. Schenk. 2016. Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system. Front. Energy Res. 4: 1–10.10.3389/fenrg.2016.00029Search in Google Scholar

Nardelli, A.E., V.G. Chiozzini, E.S. Braga and F. Chow. 2019. Integrated multi-trophic farming system between the green seaweed Ulva lactuca, mussel, and fish: a production and bioremediation solution. J. Appl. Phycol. 31: 847–856.10.1007/s10811-018-1581-4Search in Google Scholar

Nascimento, I.A., S.S.I. Marques, I.T.D. Cabanelas, G.C.D. Carvalho, M.A. Nascimento, C.O.D. Souza, J.I. Druzian, J. Hussain and W. Liao. 2014 Microalgae versus land crops as feedstock for biodiesel: productivity, quality, and standard compliance. Bioenergy Res. 7: 1002–1013.10.1007/s12155-014-9440-xSearch in Google Scholar

Nasir, I.M., T.I.M. Ghazi and R. Omar. 2012. Production of biogas from solid organic wastes through anaerobic digestion: a review. Appl. Microbiol. Biotechnol. 95: 321–329.10.1007/s00253-012-4152-7Search in Google Scholar PubMed

Nayak, M., W.I. Suh, Y.K. Chang and B. Lee. 2019. Exploration of two-stage cultivation strategies using nitrogen starvation to maximize the lipid productivity in Chlorella sp. HS2. Bioresour. Technol. 276: 110–118.10.1016/j.biortech.2018.12.111Search in Google Scholar PubMed

North W.J. 1987. Oceanic farming of Macrocystis, the problems and non-problems. Seaweed cultivation for renewable resources. In: (K.T. Bird and P.H. Benson, eds.) Seaweed cultivation for renewable resources. Elsevier, Amsterdam. pp. 39–68.Search in Google Scholar

Norsker, N.H., M.J. Barbosa, M.H. Vermuë and R.H. Wijffels. 2011. Microalgal production – a close look at the economics. Biotechnol. Adv. 29: 24–27.10.1016/j.biotechadv.2010.08.005Search in Google Scholar PubMed

Pádua, M.D., P.S.G. Fontoura and A.L. Mathias. 2004. Chemical composition of Ulvaria oxysperma (Kützing) bliding, Ulva lactuca (Linnaeus) and Ulva fascita (Delile). Braz. Arch. Biol. Technol. 47: 49–55.10.1590/S1516-89132004000100007Search in Google Scholar

Pančić, M. and T. Kiørboe. 2018. Phytoplankton defence mechanisms: traits and trade-offs. Biol. Rev. 93: 1269–1303.10.1111/brv.12395Search in Google Scholar PubMed

Patterson, T., R. Dinsdale and S. Esteves. 2008. Review of energy balances and emissions associated with biomass-based transport fuels relevant to the United Kingdom context. Energy Fuels 22: 3506–3512.10.1021/ef800237qSearch in Google Scholar

Paumier, A., T. Tatlian, E. Réveillac, E. Le Luherne, S. Ballu, M. Lepage and O. Le Pape. 2018. Impacts of green tides on estuarine fish assemblages. Estuar. Coast Shelf Sci. 213: 176–184.10.1016/j.ecss.2018.08.021Search in Google Scholar

Pedra, A.G.L.M., F. Ramlov, M. Maraschin and L. Hayashi. 2017. Cultivation of the red seaweed Kappaphycus alvarezii with effluents from shrimp cultivation and brown seaweed extract: Effects on growth and secondary metabolism. Aquaculture 479: 297–303.10.1016/j.aquaculture.2017.06.005Search in Google Scholar

Posewitz, M.C. 2017. Algal oil productivity gets a fat bonus. Nat. Biotechnol. 35: 636–638.10.1038/nbt.3920Search in Google Scholar PubMed

Qi, L., C. Hu, M. Wang, S. Shang and C. Wilson. 2017. Floating algae blooms in the East China Sea. Geophys. Res. Lett. 44: 11–501.10.1002/2017GL075525Search in Google Scholar

Raikova, S., M.J. Allen and C.J. Chuck. 2019. Hydrothermal liquefaction of macroalgae for the production of renewable biofuels. Biofuels Bioprod. Bior. 13: 1483–1504.10.1002/bbb.2047Search in Google Scholar

Ramachandra, T.V. and D. Hebbale. 2020. Bioethanol from macroalgae: Prospects and challenges. Renew. Sust. Energy Rev. 117: 109479.10.1016/j.rser.2019.109479Search in Google Scholar

Raven, J.A. 2017. The possible roles of algae in restricting the increase in atmospheric CO2 and global temperature. Eur. J. Phycol. 52: 506–522.10.1080/09670262.2017.1362593Search in Google Scholar

Ravi, V., A.H. Gao, N.B. Martinkus, M.P. Wolcott and B.K. Lamb. 2018. Air quality and health impacts of an aaviation biofuel supply chain using forest residue in the Northwestern United States. Environ. Sci. Technol. 52: 4154–4162.10.1021/acs.est.7b04860Search in Google Scholar PubMed

Remmers, I.M., R.H. Wijffels, M.J. Barbosa and P.P. Lamers. 2018. Can we approach theoretical lipid yields in microalgae? Trends Biotechnol. 36: 265–276.10.1016/j.tibtech.2017.10.020Search in Google Scholar PubMed

Renaud, S.M., D.L. Parry and L.-V. Thinh. 1994. Microalgae for use in tropical aquaculture I: gross chemical and fatty acid composition of twelve species of microalgae from the Northern Territory, Australia. J. Appl. Phycol. 6: 337–345.10.1007/BF02181948Search in Google Scholar

Rhein-Knudsen, N., M.T. Ale, F. Ajalloueian, L. Yu and A.S. Meyer. 2017. Rheological properties of agar and carrageenan from Ghanaian red seaweeds. Food Hydrocolloid 63: 50–58.10.1016/j.foodhyd.2016.08.023Search in Google Scholar

Richardson, J.W., M.D. Johnson and J.L. Outlaw. 2012. Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest. Algal Res. 1: 93–100.10.1016/j.algal.2012.04.001Search in Google Scholar

Richmond, A., E. Lichtenberg, B. Stahl and A. Vonshak. 1990. Quantitative assessment of the major limitations on productivity of Spirulina platensis in open raceways. J. Appl. Phycol. 2: 195–206.10.1007/BF02179776Search in Google Scholar

Richmond, A., S. Boussiba, A. Vonshak and R. Kopel. 1993. A new tubular reactor for mass production of microalgae outdoors. J. Appl. Phycol. 5: 327–332.10.1007/BF02186235Search in Google Scholar

Robertson, G.P., S.K. Hamilton, B.L. Barham, B.E. Dale, R.C. Izaurralde, R.D. Jackson, D.A. Landis, S.M. Swinton, K.D. Thelen and J.M. Tiedje. 2017. Cellulosic biofuel contributions to a sustainable energy future: choices and outcomes. Science 356: eaal2324.10.1126/science.aal2324Search in Google Scholar PubMed

Roesijadi, G., A.E. Copping, M.H. Huesemann, J. Foster and J.R. Benemann. 2010a. Techno-economic feasibility analysis of offshore seaweed farming for bioenergy and biobased products. PNNL-19944; U.S. Department of Energy, Washington, DC, USA.Search in Google Scholar

Roesijadi, G., S.B. Jones, L.J. Snowdenswan and Y. Zhu. 2010b. Macroalgae as a biomass feedstock: a preliminary analysis. Office of Scientific & Technical Information Technical Reports. Richland, WA, USA.10.2172/1006310Search in Google Scholar

Romero-Villegas, G.I., M. Fiamengo, F.A. Fernández and E.M. Grima. 2018. Utilization of centrate for the outdoor production of marine microalgae at pilot-scale in flat-panel photobioreactors. J. Biotechnol. 284: 102–114.10.1016/j.jbiotec.2018.08.006Search in Google Scholar PubMed

Saratale, R.G., G. Kumar, R. Banu, A. Xia, S. Periyasamy and G.D. Saratale. 2018. A critical review on anaerobic digestion of microalgae and macroalgae and co-digestion of biomass for enhanced methane generation. Bioresour. Technol. 262: 319–322.10.1016/j.biortech.2018.03.030Search in Google Scholar PubMed

Satyanarayana, K.G., A.B. Mariano and J.V.C. Vargas. 2011. A review on microalgae, a versatile source for sustainable energy and materials. Int. J. Energy Res. 35: 291–311.10.1002/er.1695Search in Google Scholar

Sen, S.M., E.I. Gürbüz, S.G. Wettstein, D.M. Alonso, J.A. Dumesic and C.T. Maravelias. 2012. Production of butene oligomers as transportation fuels using butene for esterification of levulinic acid from lignocellulosic biomass: process synthesis and technoeconomic evaluation. Green Chem. 14: 3289–3294.10.1039/c2gc35881fSearch in Google Scholar

Setchell, W.A. 1908. Nereocystis and Pelagophycus. Botanical Gazette 45: 125–134.10.1086/329472Search in Google Scholar

Shakya, R., S. Adhikari, R. Mahadevan, S.R. Shanmugam, H. Nam and T.A. Dempster. 2017. Influence of biochemical composition during hydrothermal liquefaction of algae on product yields and fuel properties. Bioresour. Technol. 243: 1112–1120.10.1016/j.biortech.2017.07.046Search in Google Scholar PubMed

Sheridan, C. 2013. Big oil turns on biofuels. Nat. Biotechnol. 31: 870–873.10.1038/nbt.2704Search in Google Scholar PubMed

Shuba, E.S. and D. Kifle. 2018. Microalgae to biofuels:‘Promising’ alternative and renewable energy, review. Renew. Sust. Energ. Rev. 81: 743–755.10.1016/j.rser.2017.08.042Search in Google Scholar

Singh, A., P.S. Nigam and J.D. Murphy. 2011. Mechanism and challenges in commercialisation of algal biofuels. Bioresour. Technol. 102: 26–34.10.1016/j.biortech.2010.06.057Search in Google Scholar PubMed

Smetacek, V. and A. Zingone. 2013. Green and golden seaweed tides on the rise. Nature 504: 84–88.10.1038/nature12860Search in Google Scholar PubMed

Soleymani, M. and K Rosentrater. 2017 Techno-economic analysis of biofuel production from macroalgae (Seaweed). Bioengineering 4: 1–10.10.3390/bioengineering4040092Search in Google Scholar PubMed PubMed Central

Sondak, C.F., P.O. Ang, J. Beardall, A. Bellgrove, S.M. Boo, G.S. Gerung, C.D. Hepburn, D.D. Hong, Z. Hu, H. Kawai and D. Largo. 2017. Carbon dioxide mitigation potential of seaweed aquaculture beds (SABs). J. Appl. Phycol. 29: 2363–2373.10.1007/s10811-016-1022-1Search in Google Scholar

Soto, M., M.A. Vazquez, A. de Vega, J.M. Vilarino, G. Fernandez and M.E.S. de Vicente. 2015. Methane potential and anaerobic treatment feasibility of Sargassum muticum. Bioresour. Technol. 189: 53–61.10.1016/j.biortech.2015.03.074Search in Google Scholar

Spolaore, P., C. Joannis-Cassan, E. Duran and A. Isambert. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101: 87–96.10.1263/jbb.101.87Search in Google Scholar

Stephenson, A., J. Dennis and S. Scott. 2008. Improving the sustainability of the production of biodiesel from oilseed rape in the UK. Process Saf. Environ. Prot. 86: 427–440.10.1016/j.psep.2008.06.005Search in Google Scholar

Stephenson, P.G., C.M. Moore, M.J. Terry, M.V. Zubkov and T.S. Bibby. 2011. Improving photosynthesis for algal biofuels: toward a green revolution. Trends Biotechnol. 29: 615–623.10.1016/j.tibtech.2011.06.005Search in Google Scholar

Tabassum, M.R., A. Xia and J.D. Murphy. 2017. Potential of seaweed as a feedstock for renewable gaseous fuel production in Ireland. Renew. Sustain. Energy Rev. 68: 136–146.10.1016/j.rser.2016.09.111Search in Google Scholar

Tedesco, S., T.M. Barroso and A.G. Olabi. 2014. Optimization of mechanical pre-treatment of Laminariaceae Spp. Biomass-derived biogas. Renew. Energy 62: 527–534.10.1016/j.renene.2013.08.023Search in Google Scholar

Thompson, T.M., B.R. Young and S. Baroutian. 2019. Advances in the pretreatment of brown macroalgae for biogas production. Fuel Process. Technol. 195: 106151.10.1016/j.fuproc.2019.106151Search in Google Scholar

Tibbetts, S.M., J.E. Milley and S.P. Lall. 2015. Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J. Appl. Phycol. 27: 1109–1119.10.1007/s10811-014-0428-xSearch in Google Scholar

Torzillo, G., B. Pushparaj, F. Bocci, W. Balloni, R. Materassi and G. Florenzano. 1986. Production of Spirulina biomass in closed photobioreactors. Biomass 11: 61–74.10.1016/0144-4565(86)90021-1Search in Google Scholar

Uribe, E., A. Vega-Gálvez, V. Heredia, A. Pastén and K. Di Scala. 2018. An edible red seaweed (Pyropia orbicularis): influence of vacuum drying on physicochemical composition, bioactive compounds, antioxidant capacity, and pigments. J. Appl. Phycol. 30: 673–683.10.1007/s10811-017-1240-1Search in Google Scholar

Vardon, D.R., B.K. Sharma, G.V. Blazina, K. Rajagopalan and T.J. Strathmann,. 2012. Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour. Technol. 109: 178–187.10.1016/j.biortech.2012.01.008Search in Google Scholar PubMed

Wang, X., L. Sheng and X. Yang. 2017. Pyrolysis characteristics and pathways of protein, lipid and carbohydrate isolated from microalgae Nannochloropsis sp. Bioresour. Technol. 229: 119–125.10.1016/j.biortech.2017.01.018Search in Google Scholar PubMed

Wargacki, A.J., E. Leonard, M.N. Win, D.D. Regitsky, C.N.S. Santos, P.B. Kim, S.R. Cooper, R.M. Raisner, A. Herman, A.B. Sivitz and A. Lakshmanaswamy. 2012. An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335: 308–313.10.1126/science.1214547Search in Google Scholar PubMed

Wassink, E.C. 1959. Efficiency of light energy conversion in plant growth. Plant Physiol. 34: 356–361.10.1104/pp.34.3.356Search in Google Scholar PubMed PubMed Central

Wei, N., J. Quarterman and Y.S. Jin. 2013. Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol. 31: 70–77.10.1016/j.tibtech.2012.10.009Search in Google Scholar PubMed

Weyer, K.M., D.R. Bush, A. Darzins and B.D. Willson. 2010. Theoretical maximum algal oil production. Bioenergy Res. 3: 204–213.10.1007/s12155-009-9046-xSearch in Google Scholar

Wu, Y.N., M. Mattsson, M.W. Ding, M.T. Wu, J. Mei and Y.L. Shen. 2019. Effects of different pretreatments on improving biogas production of macroalgae Fucus vesiculosus and Fucus serratus in Baltic Sea. Energy Fuels 33: 2278–2284.10.1021/acs.energyfuels.8b04224Search in Google Scholar

Xu, Z., G. Gao, J. Xu and H. Wu. 2017. Physiological response of a golden tide alga (Sargassum muticum) to the interaction of ocean acidification and phosphorus enrichment. Biogeosciences 14: 671–681.10.5194/bg-14-671-2017Search in Google Scholar

Ye, N.H., X.W. Zhang, Y.Z. Mao, C.W. Liang, D. Xu, J. Zou, Z.M. Zhuang and Q.Y. Wang. 2011. ‘Green tides’ are overwhelming the coastline of our blue planet: taking the world’s largest example. Ecol. Res. 26: 477–485.10.1007/s11284-011-0821-8Search in Google Scholar

Yoon, J.J., Y.J. Kim, S.H. Kim, H.J. Ryu, J.Y. Choi, G.S. Kim and M.K. Shin. 2010. Production of polysaccharides and corresponding sugars from red seaweed. Adv. Mater. Res. 93: 463–466.10.4028/www.scientific.net/AMR.93-94.463Search in Google Scholar

Yu, J., P. Wang, Y. Wang, J. Chang, S. Deng and W. Wei. 2018. hermal constraints on growth, stoichiometry and lipid content of different groups of microalgae with bioenergy potential. J. Appl. Phycol. 30: 1503–1512.10.1007/s10811-017-1358-1Search in Google Scholar

Zheng, S., M. He, J. Jiang, S. Zou, W. Yang, Y. Zhang, J. Deng and C. Wang. 2016. Effect of kelp waste extracts on the growth and lipid accumulation of microalgae. Bioresour. Technol. 201: 80–88.10.1016/j.biortech.2015.11.038Search in Google Scholar PubMed

Zhou, D., L. Zhang, S. Zhang, H. Fu and J. Chen. 2010. Hydrothermal liquefaction of macroalgae Enteromorpha prolifera to bio-oil. Energy Fuels 24: 4054–4061.10.1021/ef100151hSearch in Google Scholar

Zhuang, Y., J. Guo, L. Chen, D. Li, J. Liu and N. Ye. 2012. Microwave-assisted direct liquefaction of Ulva prolifera for bio-oil production by acid catalysis. Bioresour. Technol. 116: 133–139.10.1016/j.biortech.2012.04.036Search in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/bot-2019-0065).


Received: 2019-09-09
Accepted: 2020-02-18
Published Online: 2020-03-20
Published in Print: 2020-08-27

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/bot-2019-0065/html
Scroll to top button