Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 11, 2019

Ricci almost solitons and contact geometry

  • Amalendu Ghosh EMAIL logo
From the journal Advances in Geometry

Abstract

We prove that on a K-contact manifold, a Ricci almost soliton is a Ricci soliton if and only if the potential vector field V is a Jacobi field along the Reeb vector field ξ. Then we study contact metric as a Ricci almost soliton with parallel Ricci tensor. To this end, we consider Ricci almost solitons whose potential vector field is a contact vector field and prove some rigidity results.

MSC 2010: 53C24; 53C15; 53C21
  1. Communicated by: P. Eberlein

Acknowledgements

The author is very much thankful to the referee for some valuable remarks.

References

[1] A. Barros, R. Batista, E. Ribeiro, Jr., Compact almost Ricci solitons with constant scalar curvature are gradient. Monatsh. Math. 174 (2014), 29–39. MR3190769 Zbl 1296.5309210.1007/s00605-013-0581-3Search in Google Scholar

[2] A. Barros, E. Ribeiro, Jr., Some characterizations for compact almost Ricci solitons. Proc. Amer. Math. Soc. 140 (2012), 1033–1040. MR2869087 Zbl 1245.5304410.1090/S0002-9939-2011-11029-3Search in Google Scholar

[3] D. E. Blair, Riemannian geometry of contact and symplectic manifolds. Birkhäuser, Boston, MA 2002. MR1874240 Zbl 1011.5300110.1007/978-1-4757-3604-5Search in Google Scholar

[4] D. E. Blair, R. Sharma, Generalization of Myers' theorem on a contact manifold. Illinois J. Math. 34 (1990), 837–844. MR1062777 Zbl 0705.5302010.1215/ijm/1255988070Search in Google Scholar

[5] J.-P. Bourguignon, J.-P. Ezin, Scalar curvature functions in a conformal class of metrics and conformal transformations. Trans. Amer. Math. Soc. 301 (1987), 723–736. MR882712 Zbl 0622.5302310.1090/S0002-9947-1987-0882712-7Search in Google Scholar

[6] C. P. Boyer, K. Galicki, Einstein manifolds and contact geometry. Proc. Amer. Math. Soc. 129 (2001), 2419–2430. MR1823927 Zbl 0981.5302710.1090/S0002-9939-01-05943-3Search in Google Scholar

[7] C. P. Boyer, K. Galicki, P. Matzeu, On eta-Einstein Sasakian geometry. Comm. Math. Phys. 262 (2006), 177–208. MR2200887 Zbl 1103.5302210.1007/s00220-005-1459-6Search in Google Scholar

[8] E. Calviño Louzao, M. Fernández-López, E. García-Río, R. Vázquez-Lorenzo, Homogeneous Ricci almost solitons. Israel J. Math. 220 (2017), 531–546. MR3666435 Zbl 0678869310.1007/s11856-017-1538-3Search in Google Scholar

[9] P. Candelas, G. T. Horowitz, A. Strominger, E. Witten, Vacuum configurations for superstrings. Nuclear Phys. B258 (1985), 46–74. MR80034710.1016/0550-3213(85)90602-9Search in Google Scholar

[10] H.-D. Cao, Recent progress on Ricci solitons. In: Recent advances in geometric analysis, volume 11 of Adv. Lect. Math. (ALM), 1–38, Int. Press, Somerville, MA 2010. MR2648937 Zbl 1201.53046Search in Google Scholar

[11] J. T. Cho, R. Sharma, Contact geometry and Ricci solitons. Int. J. Geom. Methods Mod. Phys. 7 (2010), 951–960. MR2735600 Zbl 1202.5306310.1142/S0219887810004646Search in Google Scholar

[12] A. Ghosh, Notes on contact η-Einstein metrics as Ricci solitons. Beitr. Algebra Geom. 54 (2013), 567–573. MR3095742 Zbl 1279.5304210.1007/s13366-012-0111-9Search in Google Scholar

[13] A. Ghosh, Certain contact metrics as Ricci almost solitons. Results Math. 65 (2014), 81–94. MR3162430 Zbl 1305.5304810.1007/s00025-013-0331-9Search in Google Scholar

[14] A. Ghosh, R. Sharma, Sasakian metric as a Ricci soliton and related results. J. Geom. Phys. 75 (2014), 1–6. MR3126930 Zbl 1283.5303510.1016/j.geomphys.2013.08.016Search in Google Scholar

[15] J. Maldacena, The large-N limit of superconformal field theories and supergravity. Internat. J. Theoret. Phys. 38 (1999), 1113–1133. MR1705508 Zbl 0969.8104710.1063/1.59653Search in Google Scholar

[16] S. B. Myers, Connections between differential geometry and topology. I. Simply connected surfaces. Duke Math. J. 1 (1935), 376–391. MR1545884 Zbl 0012.2750210.1215/S0012-7094-35-00126-0Search in Google Scholar

[17] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan14 (1962), 333–340. MR0142086 Zbl 0115.3930210.2969/jmsj/01430333Search in Google Scholar

[18] M. Okumura, On infinitesimal conformal and projective transformations of normal contact spaces. Tôhoku Math. J. (2)14 (1962), 398–412. MR0146774 Zbl 0107.1620110.2748/tmj/1178244076Search in Google Scholar

[19] Z. Olszak, On contact metric manifolds. Tôhoku Math. J. (2)31 (1979), 247–253. MR538923 Zbl 0397.5302610.2748/tmj/1178229842Search in Google Scholar

[20] G. Perelman, The entropy formula for the Ricci flow and its geometric applications. Preprint 2002, arXiv:math/0211159 [math.DG]Search in Google Scholar

[21] D. Perrone, Contact metric manifolds whose characteristic vector field is a harmonic vector field. Differential Geom. Appl. 20 (2004), 367–378. MR2053920 Zbl 1061.5302810.1016/j.difgeo.2003.12.007Search in Google Scholar

[22] S. Pigola, M. Rigoli, M. Rimoldi, A. G. Setti, Ricci almost solitons. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)10 (2011), 757–799. MR2932893 Zbl 1239.5305710.2422/2036-2145.2011.4.01Search in Google Scholar

[23] R. Sharma, Almost Ricci solitons and K-contact geometry. Monatsh. Math. 175 (2014), 621–628. MR3273671 Zbl 1307.5303810.1007/s00605-014-0657-8Search in Google Scholar

[24] R. Sharma, A. Ghosh, Sasakian 3-manifold as a Ricci soliton represents the Heisenberg group. Int. J. Geom. Methods Mod. Phys. 8 (2011), 149–154. MR2782881 Zbl 1213.5306010.1142/S021988781100504XSearch in Google Scholar

[25] S. Tanno, The topology of contact Riemannian manifolds. Illinois J. Math. 12 (1968), 700–717. MR0234486 Zbl 0165.2470310.1215/ijm/1256053971Search in Google Scholar

[26] Y. Tashiro, On conformal collineations. Math. J. Okayama Univ. 10 (1960), 75–85. Zbl 0103.14904Search in Google Scholar

[27] K. Yano, Integral formulas in Riemannian geometry. Dekker 1970. MR0284950 Zbl 0213.23801Search in Google Scholar

[28] K. Yano, T. Nagano, Einstein spaces admitting a one-parameter group of conformal transformations. Ann. of Math. (2)69 (1959), 451–461. MR0101535 Zbl 0088.1420410.1016/S0304-0208(08)72248-5Search in Google Scholar

Received: 2018-04-19
Revised: 2018-07-24
Revised: 2019-06-17
Published Online: 2019-09-11
Published in Print: 2021-04-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.5.2024 from https://www.degruyter.com/document/doi/10.1515/advgeom-2019-0026/html
Scroll to top button