Skip to main content
Log in

Regularity Properties of Bilinear Maximal Function and Its Fractional Variant

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We introduce and study the bilinear fractional maximal operator

$$\begin{aligned} {\mathfrak {M}}_\alpha (f,g)(x)=\sup \limits _{r>0}\frac{1}{|B(O,r)|^{1-\frac{\alpha }{n}}}\int _{B(O,r)}|f(x+y)g(x-y)|dy,\ \ \ \ \ x\in {\mathbb {R}}^n, \end{aligned}$$

where \(O=(0,0,\ldots ,0)\in {\mathbb {R}}^n\) and \(0\le \alpha <n\), which recovers the classical bilinear maximal operator \({\mathfrak {M}}\), corresponding to the case \(\alpha =0\). When \(\alpha =0\), we demonstrate that \({\mathfrak {M}}\) is bounded and continuous from the product Triebel–Lizorkin spaces \(F_s^{p_1,q}({\mathbb {R}}^n)\times F_s^{p_2,q}({\mathbb {R}}^n)\) to \(F_s^{p,q}({\mathbb {R}}^n)\), from the product fractional Sobolev spaces \(W^{s,p_1}({\mathbb {R}}^n)\times W^{s,p_2}({\mathbb {R}}^n)\) to \(W^{s,p}({\mathbb {R}}^n)\) and from the product Besov spaces \(B_s^{p_1,q}({\mathbb {R}}^n)\times B_s^{p_2,q} ({\mathbb {R}}^n)\) to \(B_s^{p,q}({\mathbb {R}}^n)\), provided that \(0<s<1\), \(1<p_1,p_2,p,q<\infty \) and \(1/p=1/p_1+1/p_2\). When \(0<\alpha <n\), we show that \({\mathfrak {M}}_\alpha \) is bounded and continuous from \(W^{1,p_1}({\mathbb {R}}^n)\times W^{1,p_2}({\mathbb {R}}^n)\) to \(W^{1,q}({\mathbb {R}}^n)\), provided that \(1<p_1,p_2<\infty \), \(1\le {p_1p_2}/{(p_1+p_2)}<\infty \), \(0\le \alpha <n({1}/{p_1}+{1}/{p_2})\) and \({1}/{q}={1}/{p_1}+{1}/{p_2}-{\alpha }/{n}\). As an application, we obtain a weak type inequality for the Sobolev capacity, which can be used to establish the q-quasicontinuity of \({\mathfrak {M}}_\alpha (f,g)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldaz, J.M., Pérez Lázaro, J.: Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities. Trans. Am. Math. Soc. 359(5), 2443–2461 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Benedek, A., Calderón, A.P., Panzone, R.: Convolution operators on Banach space valued functions. Proc. Nat. Acad. Sci. 48, 356–365 (1962)

    MathSciNet  MATH  Google Scholar 

  3. Bojarski, B., Hajłasz, P.: Pointwise inequalities for Sobolev functions and some applications. Studia Math. 106, 77–92 (1993)

    MathSciNet  MATH  Google Scholar 

  4. Carneiro, E., Mardid, J.: Derivative bounds for fractional maximal functions. Trans. Am. Math. Soc. 369(6), 4063–4092 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Carneiro, E., Mardid, J., Pierce, L.B.: Endpoint Sobolev and BV continuity for maximal operators. J. Funct. Anal. 273(10), 3262–3294 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Carneiro, E., Moreira, D.: On the regularity of maximal operators. Proc. Am. Math. Soc. 136(12), 4395–4404 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Carneiro, E., Svaiter, B.F.: On the variation of maximal operators of convolution type. J. Funct. Anal. 265, 837–865 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Federer, H., Ziemer, W.: The Lebesgue set of a function whose distribution derivatives are \(p\)-th power summable. Indiana Univ. Math. J. 22, 139–158 (1972)

    MathSciNet  MATH  Google Scholar 

  9. Frazier, M., Jawerth, B., Weiss, G.: Littlewood–Paley Theory and the Study of Function Spaces. CBMS Reg Conf Ser, vol. 79. Amer Math Soc, Providence, RI (1991)

    MATH  Google Scholar 

  10. Grafakos, L.: Classical and Modern Fourier Analysis. Prentice Hall, Upper Saddle River, NJ (2003)

    MATH  Google Scholar 

  11. Hajłasz, P., Malý, J.: On approximate differentiability of the maximal function. Proc. Am. Math. Soc. 138(1), 165–174 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Hajłasz, P., Onninen, J.: On boundedness of maximal functions in Sobolev spaces. Ann. Acad. Sci. Fenn. Math. 29(1), 167–176 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Heikkinen, T., Kinnunen, J., Korvenpää, J., Tuominen, H.: Regularity of the local fractional maximal function. Bull. Lond. Math. Soc. 53(1), 127–154 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Kinnunen, J.: The Hardy–Littlewood maximal function of a Sobolev function. Israel J. Math. 100, 117–124 (1997)

    MathSciNet  MATH  Google Scholar 

  15. Kinnunen, J., Lindqvist, P.: The derivative of the maximal function. J. Reine. Angew. Math. 503, 161–167 (1998)

    MathSciNet  MATH  Google Scholar 

  16. Kinnunen, J., Saksman, E.: Regularity of the fractional maximal function. Bull. Lond. Math. Soc. 35(4), 529–535 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Korry, S.: Boundedness of Hardy–Littlewood maximal operator in the framework of Lizorkin–Triebel spaces. Rev. Mat. Complut. 15(2), 401–416 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Korry, S.: A class of bounded operators on Sobolev spaces. Arch. Math. 82(1), 40–50 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Lacey, M.: The bilinear maximal function map into \(L^p\) for \(2/3<p\le 1\). Ann. Math. 151, 35–57 (2000)

    MathSciNet  MATH  Google Scholar 

  20. Lerner, A.K., Ombrosi, S., Pérez, C., Torres, R.H., Trujillo-González, R.: New maximal functions and multiple weighted for the multilinear Calderón-Zygmund theory. Adv. Math. 220, 1222–1264 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Lewis, J.L.: On very weak solutions of certain elliptic systems. Commun. Partial Differ. Equ. 18, 1515–1537 (1993)

    MathSciNet  MATH  Google Scholar 

  22. Liu, F.: Continuity and approximate differentiability of multisublinear fractional maximal functions. Math. Inequal. Appl. 21(1), 25–40 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Liu, F., Mao, S.: On the regularity of the one-sided Hardy–Littlewood maximal functions. Czech. Math. J. 67(1), 219–234 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Liu, F., Wu, H.: On the regularity of the multisublinear maximal functions. Can. Math. Bull. 58(4), 808–817 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Liu, F., Wu, H.: On the regularity of maximal operators supported by submanifolds. J. Math. Anal. Appl. 453, 144–158 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Luiro, H.: Continuity of the maixmal operator in Sobolev spaces. Proc. Am. Math. Soc. 135(1), 243–251 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Luiro, H.: On the regularity of the Hardy-Littlewood maximal operator on subdomains of \({\mathbb{R}}^n\). Proc. Edinb. Math. Soc. 53(1), 211–237 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Triebel, H.: Theory of Function Spaces, Monogr Math, vol. 78. Birkhäser Verlag, Basel (1983)

    Google Scholar 

  29. Yabuta, K.: Triebel–Lizorkin space boundedness of Marcinkiewicz integrals associated to surfaces. Appl. Math. J. Chin. Univ. Ser. B 30(4), 418–446 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was partially supported by the NNSF of China (Grant No. 11701333). The second author was partially supported by NNSF of China (Grant No. 11701453) and Fundamental Research Funds for the Central Universities (Grant No.31020180QD05).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Liu, S. & Zhang, X. Regularity Properties of Bilinear Maximal Function and Its Fractional Variant. Results Math 75, 88 (2020). https://doi.org/10.1007/s00025-020-01215-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-020-01215-2

Mathematics Subject Classification

Keywords

Navigation