Skip to main content
Log in

A Systematic Study on Au-Capped Si Nanowhiskers for Size-Dependent Improved Biosensing Applications

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Reducing the distance between the fluorescence molecules and noble metal (resonant) nanostructures is known to advance the process of electromagnetic coupling and energy transfer, which in return yields fluorescence enhancement particularly exploited for improved biomedical applications. In this study, Au-capped Si nanowhiskers (NWs) at various sizes were fabricated using a vapor–liquid–solid (VLS) mechanism for systematically investigating the dependence of the size of the Au-capped Si NWs on the fluorescence enhancement factor with respect to the fluorescence emission from Rhodamine 6G (Rh-6G) fluorophore. Opposite to what is anticipated from the literature, the maximum enhancement was obtained for the sample for which the Au-nanoparticle (NP) capping is well isolated from the fluorophore and the vertical distance between the fluorophore and the plasmonic metal nanoparticle is largest. Numerical simulations using the finite element method (FEM) were shown to support the experimental optical response results. Four-point probe I-V measurements also show that the Schottky ideality factor of Au-capped Si NWs decays exponentially upon the rise in the fluorescence enhancement factor.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ayala-Orozco C, Liu JG, Knight MW, Wang Y, Day JK, Nordlander P, Halas NJ (2014) Fluorescence enhancement of molecules inside a gold nanomatryoshka. Nano Lett 14:2926–2933. https://doi.org/10.1021/nl501027j

    Article  CAS  Google Scholar 

  2. Holmes JD, Johnston KP, Doty RC, Korgel BA (2000) Control of thickness and orientation of solution-grown silicon nanowires. Science 287:1471–1473. https://doi.org/10.1126/science.287.5457.1471

    Article  CAS  Google Scholar 

  3. Karakiz M, Toydemir B, Unal B, Colakerol Arslan L (2014) Growth of shape controlled silicon nanowhiskers by electron beam evaporation. The European Physical Journal Applied Physics 65:20403. https://doi.org/10.1051/epjap/2014130362

    Article  CAS  Google Scholar 

  4. Sokolov LV, Gavrilova TA, Werner P et al (2008) Molecular-beam epitaxy-grown Si whisker structures: morphological, optical and electrical properties. Nanotechnology 19:225708. https://doi.org/10.1088/0957-4484/19/22/225708

    Article  CAS  Google Scholar 

  5. Schmidt MS, Hübner J, Boisen A (2012) Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy. Adv Mater 24:11–18. https://doi.org/10.1002/adma.201103496

    Article  CAS  Google Scholar 

  6. Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of optical resonances. Chem Phys Lett 288:243–247. https://doi.org/10.1016/S0009-2614(98)00277-2

    Article  CAS  Google Scholar 

  7. Abadeer NS, Brennan MR, Wilson WL, Murphy CJ (2014) Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods. ACS Nano 8:8392–8406. https://doi.org/10.1021/nn502887j

    Article  CAS  Google Scholar 

  8. Wu Y, Yang P (2001) Direct observation of vapor−liquid−solid nanowire growth. J Am Chem Soc 123:3165–3166. https://doi.org/10.1021/ja0059084

    Article  CAS  Google Scholar 

  9. Ge S, Jiang K, Lu X, Chen Y, Wang R, Fan S (2005) Orientation-controlled growth of single-crystal silicon-nanowire arrays. Adv Mater 17:56–61. https://doi.org/10.1002/adma.200400474

    Article  CAS  Google Scholar 

  10. Wu Y, Cui Y, Huynh L, Barrelet CJ, Bell DC, Lieber CM (2004) Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett 4:433–436. https://doi.org/10.1021/nl035162i

    Article  CAS  Google Scholar 

  11. Yan H, Xing Y, Hang Q et al (2000) Growth of amorphous silicon nanowires via a solid–liquid–solid mechanism. Chem Phys Lett 323:224–228. https://doi.org/10.1016/S0009-2614(00)00519-4

    Article  CAS  Google Scholar 

  12. Trentler TJ, Hickman KM, Goel SC, Viano AM, Gibbons PC, Buhro WE (1995) Solution-liquid-solid growth of crystalline III-V semiconductors: an analogy to vapor-liquid-solid growth. Science 270:1791–1794. https://doi.org/10.1126/science.270.5243.1791

    Article  CAS  Google Scholar 

  13. Chen SY, Chen LJ (2006) Self-assembled epitaxial NiSi2 nanowires on Si(001) by reactive deposition epitaxy. Thin Solid Films 508:222–225. https://doi.org/10.1016/j.tsf.2005.07.322

    Article  CAS  Google Scholar 

  14. Wang Y, Schmidt V, Senz S, Gösele U (2006) Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat Nanotechnol 1:186–189. https://doi.org/10.1038/nnano.2006.133

    Article  CAS  Google Scholar 

  15. Zhang R-Q, Lifshitz Y, Lee S-T (2003) Oxide-assisted growth of semiconducting nanowires. Adv Mater 15:635–640. https://doi.org/10.1002/adma.200301641

    Article  CAS  Google Scholar 

  16. Yu DP, Lee CS, Bello I, Sun XS, Tang YH, Zhou GW, Bai ZG, Zhang Z, Feng SQ (1998) Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature. Solid State Commun 105:403–407. https://doi.org/10.1016/S0038-1098(97)10143-0

    Article  CAS  Google Scholar 

  17. Peng KQ, Hu JJ, Yan YJ, Wu Y, Fang H, Xu Y, Lee ST, Zhu J (2006) Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv Funct Mater 16:387–394. https://doi.org/10.1002/adfm.200500392

    Article  CAS  Google Scholar 

  18. Chakraborti S, Basu RN, Panda SK (2018) Vertically aligned silicon nanowire array decorated by Ag or Au nanoparticles as SERS substrate for bio-molecular detection. Plasmonics 13:1057–1080. https://doi.org/10.1007/s11468-017-0605-2

    Article  CAS  Google Scholar 

  19. Zhu J, Yu Z, Burkhard GF, Hsu CM, Connor ST, Xu Y, Wang Q, McGehee M, Fan S, Cui Y (2009) Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett 9:279–282. https://doi.org/10.1021/nl802886y

    Article  CAS  Google Scholar 

  20. Attaran A, Emami SD, Soltanian MRK, Penny R, behbahani F, Harun SW, Ahmad H, Abdul-Rashid HA, Moghavvemi M (2014) Circuit model of Fano resonance on tetramers, pentamers, and broken symmetry Pentamers. Plasmonics 9:1303–1313. https://doi.org/10.1007/s11468-014-9743-y

    Article  Google Scholar 

  21. Stöger-Pollach M, Bukvišová K, Schwarz S, Kvapil M, Šamořil T, Horák M (2019) Fundamentals of cathodoluminescence in a STEM: the impact of sample geometry and electron beam energy on light emission of semiconductors. Ultramicroscopy 200:111–124. https://doi.org/10.1016/j.ultramic.2019.03.001

    Article  CAS  Google Scholar 

  22. Ge W, Zhang X, Liu M, et al (2014) Plasmonic properties of Au/SiO2 nanoparticles: effect of gold size and silica dielectric layer thickness. Materials Research Innovations 18:S4-701-S4-705. https://doi.org/10.1179/1432891714Z.000000000769

  23. Sharma R, Roopak S, Kumar PN et al (2017) Study of surface plasmon resonances of core-shell nanosphere: a comparison between numerical and analytical approach. Plasmonics 12:977–986. https://doi.org/10.1007/s11468-016-0349-4

    Article  CAS  Google Scholar 

  24. Nomura K-I, Fujii S, Ohki Y, Awazu K, Fujimaki M, Tominaga J, Fukuda N, Hirakawa T, Rockstuhl C (2008) Fabrication of inert silver nanoparticles with a thin silica coating. Jpn J Appl Phys 47:8641–8643. https://doi.org/10.1143/JJAP.47.8641

    Article  CAS  Google Scholar 

  25. Mandal A, Chaudhuri P (2013) Controlling the absorption spectrum within a thin amorphous silicon layer by using the size dependent plasmonic behaviour of silver nanoparticles. Journal of Renewable and Sustainable Energy 5:031614. https://doi.org/10.1063/1.4809787

    Article  CAS  Google Scholar 

  26. Vyas H, Hegde RS (2019) Waveguide interrogation of a compound plasmonic nanoantenna. Journal of Nanophotonics 13:1. https://doi.org/10.1117/1.JNP.13.026004

    Article  Google Scholar 

  27. Taheri M, Hajiesmaeilbaigi F, Motamedi AS, Golian Y (2015) Nonlinear optical response of gold/silicon nanocomposite prepared by consecutive laser ablation. Laser Physics 25:. https://doi.org/10.1088/1054-660X/25/6/065901, 25

  28. Ferdous N, Ertekin E (2018) Atomic scale origins of sub-band gap optical absorption in gold-hyperdoped silicon. AIP Adv 8:55014. https://doi.org/10.1063/1.5023110

    Article  CAS  Google Scholar 

  29. Ghosh R, Imakita K, Fujii M, Giri PK (2016) Effect of Ag/Au bilayer assisted etching on the strongly enhanced photoluminescence and visible light photocatalysis by Si nanowire arrays. Phys Chem Chem Phys 18:7715–7727. https://doi.org/10.1039/C5CP07161E

    Article  CAS  Google Scholar 

  30. Mei Z, Tang L (2017) Surface-plasmon-coupled fluorescence enhancement based on ordered gold nanorod array biochip for ultrasensitive DNA analysis. Anal Chem 89:633–639. https://doi.org/10.1021/acs.analchem.6b02797

    Article  CAS  Google Scholar 

  31. Drake C, Deshpande S, Bera D, Seal S (2007) Metallic nanostructured materials based sensors. Int Mater Rev 52:289–317. https://doi.org/10.1179/174328007X212481

    Article  CAS  Google Scholar 

  32. Williamson G, Hall W (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31. https://doi.org/10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  33. Mote V, Purushotham Y, Dole B (2012) Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. Journal of Theoretical and Applied Physics 6:6. https://doi.org/10.1186/2251-7235-6-6

    Article  Google Scholar 

  34. Cantwell PR, Kim H, Schneider MM, Hsu HH, Peroulis D, Stach EA, Strachan A (2012) Estimating the in-plane Young’s modulus of polycrystalline films in MEMS. J Microelectromech Syst 21:840–849. https://doi.org/10.1109/JMEMS.2012.2191939

    Article  CAS  Google Scholar 

  35. Cheung SK, Cheung NW (1986) Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl Phys Lett 49:85–87. https://doi.org/10.1063/1.97359

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support provided by Bilkent University UNAM.

Author information

Authors and Affiliations

Authors

Contributions

The works in the project were coordinated by Dr. İsa Şeker. The manuscript was written by Dr. İsa Şeker and Dr. Ali Karatutlu. The numerical analyses were performed by Dr. Ali Karatutlu and Dr. Bülend Ortaç. Fabrication of Au-capped Si NWs were conducted by Dr. İsa Şeker and Dr. Mehmet Karakız. Fluorescence enhancement studies of Rh-6G were conducted and recorded by Dr. İsa Şeker and Dr. Kurtuluş Gölcük. Dr. Ali Karatutlu and Dr. İsa Şeker also performed the morphological, structural, and electrical analyses of Au-capped Si NWs.

Corresponding authors

Correspondence to İsa Şeker or Ali Karatutlu.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şeker, İ., Karatutlu, A., Gölcük, K. et al. A Systematic Study on Au-Capped Si Nanowhiskers for Size-Dependent Improved Biosensing Applications. Plasmonics 15, 1739–1745 (2020). https://doi.org/10.1007/s11468-020-01195-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01195-7

Keywords

Navigation