Skip to main content
Log in

Multiplicity of Solutions for Kirchhoff Fractional Differential Equations Involving the Liouville-Weyl Fractional Derivatives

  • Published:
Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences) Aims and scope Submit manuscript

An Erratum to this article was published on 01 July 2020

This article has been updated

Abstract

In this paper, by using variational methods and critical point theory we investigate the existence of solutions for the following fractional Kirchhoff-type equation:

$$\begin{cases}S\left(\int\limits_{\mathbb{R}}{|{}_{-\infty}D_{t}^{\alpha}u(t)|}^{2}dt\right){}_{t}D_{\infty}^{\alpha}({}_{-\infty}D_{t}^{\alpha}u(t))+l(t)u(t)=f(t,u(t)),\quad t\in\mathbb{R},\\ u\in H^{\alpha}(\mathbb{R}),\end{cases}$$

where \(\alpha\in(\frac{1}{2},1]\), \({}_{-\infty}D_{t}^{\alpha}\) and \({}_{t}D_{\infty}^{\alpha}\) are the left and right Liouville-Weyl fractional derivatives of order \(\alpha\) on the whole axis \(\mathbb{R}\), respectively, \(u\in\mathbb{R}\), \(l:\mathbb{R}\to\mathbb{R}\) is continuous and has a positive minimum, \(f\in C(\mathbb{R}\times\mathbb{R},\mathbb{R})\), and \(S:\mathbb{R}^{+}\to\mathbb{R}^{+}\) is a continuous function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 15 September 2020

    erratum

REFERENCES

  1. A. M. A. El-Sayed, ‘‘Nonlinear functional differential equations of arbitrary orders. Nonlinear Anal.,’’ 33, 181–186 (1998).

    Article  MathSciNet  Google Scholar 

  2. A. A. Kilbas and J. J. Trujillo, ‘‘Differential equations of fractional order: Methods, results and problems I,’’ Appl. Anal. 78, 153–192 (2001).

    Article  MathSciNet  Google Scholar 

  3. A. A. Kilbas and J. J. Trujillo, ‘‘Differential equations of fractional order: Methods, results and problems II,’’ Appl. Anal. 81, 435–493 (2002).

    Article  MathSciNet  Google Scholar 

  4. Z. Zhang and R. Yuan, ‘‘Variational approach to solutions for a class of fractional Hamiltonian systems,’’ Math. Methods Appl. Sci. 37, 1873–1883 (2014).

    Article  MathSciNet  Google Scholar 

  5. C. Torres, ‘‘Existence of solution for a class of fractional Hamiltonian systems,’’ Electronic J. Differ. Equat. 2013 (259), 1–12 (2013).

    Article  Google Scholar 

  6. Y. Zhou, Basic Theory of Fractional Differential Equations (World Scientific, Singapore, 2014).

    Book  Google Scholar 

  7. N. Nyamoradi and Y. Zhou, ‘‘Bifurcation results for a class of fractional Hamiltonian systems with Liouville-Weyl fractional derivatives,’’ J. Vibration and Control (2014), Online, DOI: 10.1177/1077546314535827.

  8. N. Nyamoradi and Y. Zhou, ‘‘Existence of solutions for a Kirchhoff type fractional differential equations via minimal principle and Morse theory,’’ Topolog. Meth. Appl. Anal. 76 (2), 617–630 (2015).

    MathSciNet  MATH  Google Scholar 

  9. G. A. M. Cruz and C. E. Torres Ledesma, ‘‘Multiplicity of solutions for fractional Hamiltonian systems with Liouville-Weyl fractional derivative,’’ Fract. Calc. Appl. Anal. 18 (4), 875–890 (2015).

    MathSciNet  MATH  Google Scholar 

  10. J. Xu, D. O’Regan, and K. Zhang, ‘‘Multiple Solutions for a Class of Fractional Hamiltonian Systems,’’ Fract. Calc. Appl. Anal. 18 (1), 48–63 (2015).

    Article  MathSciNet  Google Scholar 

  11. G. Kirchhoff, Mechanik (Teubner: Leipzig, 1883).

    MATH  Google Scholar 

  12. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, in: North-Holland Mathematics Studies (Elsevier Science B.V., Amsterdam, 2006), Vol. 204.

    Google Scholar 

  13. S. Li and J. Liu, ‘‘Some existence theorems on multiple critical points and their applications,’’ Kexue Tongbao 17, 1025–1027 (1984).

    Google Scholar 

  14. A. Li and J. Su, ‘‘Multiple nontrivial solutions to a \(p\)-Kirchhoff equation,’’ Commun. Pure Appl. Anal. 15 (1), 91–102 (2016).

    Article  MathSciNet  Google Scholar 

  15. K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solutions Problems, 1st ed., (Birkhauser, Boston, 1993).

    Book  Google Scholar 

  16. J. Mawhinm and M. Willem, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences 74 (Springer, Berlin, 1989).

  17. J. Liu, ‘‘A Morse index for a saddle point,’’ Syst. Sc. Math. Sc. 2, 32–39 (1989).

    MathSciNet  MATH  Google Scholar 

  18. P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Reg. Conf. Ser. Math., vol. 65 (American Mathematical Society, Providence, 1986).

  19. W. M. Zou, ‘‘Variant fountain theorems and their applications, Manuscripta,’’ Math. 104, 343–358 (2001).

    MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the referees for their suggestions and helpful comments which improved the presentation of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Ashraf Nori, Nemat Nyamoradi or Nasrin Eghbali.

Additional information

MSC2010 numbers: 34A08; 35A15

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf Nori, A., Nyamoradi, N. & Eghbali, N. Multiplicity of Solutions for Kirchhoff Fractional Differential Equations Involving the Liouville-Weyl Fractional Derivatives. J. Contemp. Mathemat. Anal. 55, 13–31 (2020). https://doi.org/10.3103/S1068362320010069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068362320010069

Keywords:

Navigation