Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Impacts of hydrothermal plume processes on oceanic metal cycles and transport

A Publisher Correction to this article was published on 21 July 2020

This article has been updated

Abstract

Chemical, physical and biological processes in hydrothermal plumes control the flux of elements from hydrothermal vents to the global oceans. The timescales of these processes range from less than a second, as the hydrothermal fluid mixes with seawater at the seafloor, to decades, as the plume disperses over thousands of kilometres. Integrating hydrothermal geochemistry throughout the lifetime of the plume reveals some well-constrained processes, along with many surprises. For instance, contrary to the idea that metals are removed from the hydrothermal plume via oxidation, a survey of recent datasets reveals that oxidation of iron and manganese does not consistently result in their removal from the plume, and that manganese may be lost from the water column more rapidly than iron. These observations suggest that our understanding of element transport in hydrothermal plumes is incomplete, partly due to the change in removal processes as the plume disperses from less than 1 km from the vent to more than 4,000 km. We suggest that characterizing the plume on the basis of regions that retain some reduced components versus those that are fully oxidized, in addition to buoyancy, will illuminate the nature of the dominant processes and allow a more complete understanding of the ultimate fate of hydrothermally derived metals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hydrothermal plume processes.

Similar content being viewed by others

Change history

References

  1. German, C. R. & Seyfried, W. E. in Treatise on Geochemistry 2nd Edition – Volume 8: The Oceans and Marine Geochemistry (eds Mottl, M. J. & Elderfield, H.) 191–233 (Elsevier, 2014).

  2. Tagliabue, A. et al. Hydrothermal contribution to the oceanic dissolved iron inventory. Nat. Geosci. 3, 252–256 (2010).

    Google Scholar 

  3. Yücel, M., Gartman, A., Chan, C. S. & Luther, G. W. Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean. Nat. Geosci. 4, 367–371 (2011).

    Google Scholar 

  4. Gartman, A., Findlay, A. J. & Luther, G. W. Nanoparticulate pyrite and other nanoparticles are a widespread component of hydrothermal vent black smoker emissions. Chem. Geol. 366, 32–41 (2014).

    Google Scholar 

  5. Findlay, A. J., Gartman, A., Shaw, T. J. & Luther, G. W. Trace metal concentration and partitioning in the first 1.5 m of hydrothermal vent plumes along the Mid-Atlantic Ridge: TAG, Snakepit, and Rainbow. Chem. Geol. 412, 117–131 (2015).

    Google Scholar 

  6. Bennett, S. A. et al. Dissolved and particulate organic carbon in hydrothermal plumes from the East Pacific Rise, 9°50′N. Deep Sea Res. Pt I 58, 922–931 (2011).

    Google Scholar 

  7. Toner, B. M. et al. Preservation of iron(ii) by carbon-rich matrices in a hydrothermal plume. Nat. Geosci. 2, 197–201 (2009).

    Google Scholar 

  8. Sander, S. G. & Koschinsky, A. Metal flux from hydrothermal vents increased by organic complexation. Nat. Geosci. 4, 145–150 (2011).

    Google Scholar 

  9. Lough, A. J. M. et al. Soluble iron conservation and colloidal iron dynamics in a hydrothermal plume. Chem. Geol. 511, 225–237 (2019).

    Google Scholar 

  10. Li, M. et al. Microbial iron uptake as a mechanism for dispersing iron from deep-sea hydrothermal vents. Nat. Commun. 5, 3192 (2014).

    Google Scholar 

  11. Breier, J. A. et al. Sulfur, sulfides, oxides and organic matter aggregated in submarine hydrothermal plumes at 9°50′N East Pacific Rise. Geochem. Cosmochim. Acta 88, 216–236 (2012).

    Google Scholar 

  12. Hoffman, C. L. et al. Near-field iron and carbon chemistry of non-buoyant hydrothermal plume particles, Southern East Pacific Rise 15° S. Mar. Chem. 201, 183–197 (2018).

    Google Scholar 

  13. Fitzsimmons, J. N. et al. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange. Nat. Geosci. 10, 195–201 (2017).

    Google Scholar 

  14. Resing, J. A. et al. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature 523, 200–203 (2015).

    Google Scholar 

  15. German, C. R. & Von Damm, K. L. in Treatise on Geochemistry: The Oceans and Marine Geochemistry (eds Holland, H. D. & Turekian, K. K.) 181–222 (Elsevier, 2004).

  16. Saito, M. A. et al. Slow-spreading submarine ridges in the South Atlantic as a significant oceanic iron source. Nat. Geosci. 6, 775–779 (2013).

    Google Scholar 

  17. Hrischeva, E. & Scott, S. D. Geochemistry and morphology of metalliferous sediments and oxyhydroxides from the Endeavour segment, Juan de Fuca Ridge. Geochim. Cosmochim. Acta 71, 3476–3497 (2007).

    Google Scholar 

  18. Fitzsimmons, J. N., Boyle, E. A. & Jenkins, W. J. Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean. Proc. Natl Acad. Sci. USA 111, 16654–16661 (2014).

    Google Scholar 

  19. Lee, J. M., Heller, M. I. & Lam, P. J. Size distribution of particulate trace elements in the U. S. GEOTRACES Eastern Pacific Zonal Transect (GP16). Mar. Chem. 201, 108–123 (2017).

    Google Scholar 

  20. Middag, R., de Baar, H. J. W., Laan, P. & Klunder, M. B. Fluvial and hydrothermal input of manganese into the Arctic Ocean. Geochim. Cosmochim. Acta 75, 2393–2408 (2011).

    Google Scholar 

  21. Klunder, M. B., Laan, P., Middag, R., De Baar, H. J. W. & Bakker, K. Dissolved iron in the Arctic Ocean: important role of hydrothermal sources, shelf input and scavenging removal. J. Geophys. Res. Oceans 117, C04014 (2012).

    Google Scholar 

  22. Kipp, L. E. et al. Radium isotopes as tracers of hydrothermal inputs and neutrally buoyant plume dynamics in the deep ocean. Mar. Chem. 201, 51–65 (2017).

    Google Scholar 

  23. Lupton, J. Hydrothermal helium plumes in the Pacific Ocean. J. Geophys. Res. 103, 15853–15868 (1998).

    Google Scholar 

  24. Hollenbach, D. F. & Herndon, J. M. Deep-Earth reactor: nuclear fission, helium, and the geomagnetic field. Proc. Natl Acad. Sci. USA 98, 11085–11090 (2001).

    Google Scholar 

  25. Neuholz, R. et al. Near-field hydrothermal plume dynamics at Brothers Volcano (Kermadec Arc): a short-lived radium isotope study. Chem. Geol. 533, 119379 (2020).

    Google Scholar 

  26. Von Damm, K. L., Edmond, J. M., Grant, B. & Measures, C. I. Chemistry of submarine hydrothermal solutions at 21° N, East Pacific Rise. Geochim. Cosmochim. Acta 49, 2197–2220 (1985).

    Google Scholar 

  27. Haymon, R. M. & Kastner, M. Caminite: a new magnesium-hydroxide-sulfate-hydrate mineral found in a submarine hydrothermal deposit, East Pacific Rise, 21° N. Am. Mineral. 71, 819–825 (1986).

    Google Scholar 

  28. Edmonds, H. N. & German, C. R. Particle geochemistry in the Rainbow hydrothermal plume, Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 68, 759–772 (2004).

    Google Scholar 

  29. Klevenz, V. et al. Geochemistry of vent fluid particles formed during initial hydrothermal fluid-seawater mixing along the Mid-Atlantic Ridge. Geochem. Geophys. Geosyst. 12, Q0AE05 (2012).

    Google Scholar 

  30. Seyfried, W. E., Pester, N. J., Ding, K. & Rough, M. Vent fluid chemistry of the Rainbow hydrothermal system (36° N, MAR): phase equilibria and in situ pH controls on subseafloor alteration processes. Geochim. Cosmochim. Acta 75, 1574–1593 (2011).

    Google Scholar 

  31. Waeles, M. et al. On the early fate of hydrothermal iron at deep-sea vents: a reassessment after in situ filtration. Geophys. Res. Lett. 44, 4233–4240 (2017).

    Google Scholar 

  32. Rudnicki, M. D. & Elderfield, H. Helium, radon and manganese at the TAG and Snakepit hydrothermal vent fields, 26° and 23° N, Mid-Atlantic Ridge. Earth Planet. Sci. Lett. 113, 307–321 (1992).

    Google Scholar 

  33. Chin, C. S. et al. In situ observations of dissolved iron and manganese in hydrothermal vent plumes, Juan de Fuca Ridge. J. Geophys. Res. Solid Earth 99, 4969–4984 (1994).

    Google Scholar 

  34. Mandernack, K. W. & Tebo, B. M. Manganese scavenging and oxidation at hydrothermal vents and in vent plumes. Geochim. Cosmochim. Acta 57, 3907–3923 (1993).

    Google Scholar 

  35. Wang, H., Yang, Q., Ji, F., Lilley, M. D. & Zhou, H. The geochemical characteristics and Fe (II) oxidation kinetics of hydrothermal plumes at the Southwest Indian Ridge. Mar. Chem. 134–135, 29–35 (2012).

    Google Scholar 

  36. Lam, P. J. et al. Methods for analyzing the concentration and speciation of major and trace elements in marine particles. Prog. Oceanogr. 133, 32–42 (2015).

    Google Scholar 

  37. Hatta, M. et al. An overview of dissolved Fe and Mn distributions during the 2010–2011 U.S. GEOTRACES North Atlantic cruises: GEOTRACES GA03. Deep Sea Res. Pt II 116, 117–129 (2015).

    Google Scholar 

  38. Jenkins, W. J. et al. The deep distributions of helium isotopes, radiocarbon, and noble gases along the U.S. GEOTRACES East Pacific Zonal Transect (GP16). Mar. Chem. 201, 167–182 (2017).

    Google Scholar 

  39. Metz, S. & Trefry, J. H. Chemical and mineralogical influences on concentrations of trace metals in hydrothermal fluids. Geochim. Cosmochim. Acta 64, 2267–2279 (2000).

    Google Scholar 

  40. Field, M. P. & Sherrell, R. M. Dissolved and particulate Fe in a hydrothermal plume at 9°45′N, East Pacific Rise. Geochim. Cosmochim. Acta 64, 619–628 (2000).

    Google Scholar 

  41. Statham, P. J., German, C. R. & Connelly, D. P. Iron (II) distribution and oxidation kinetics in hydrothermal plumes at the Kairei and Edmond vent sites, Indian Ocean. Earth Planet. Sci. Lett. 236, 588–896 (2005).

    Google Scholar 

  42. Tagliabue, A. et al. The integral role of iron in ocean biogeochemistry. Nature 543, 51–59 (2017).

    Google Scholar 

  43. Campbell, A. C., Gieskes, J. M., Lupton, J. E. & Lonsdale, P. F. Manganese geohemistry in the Guaymas Basin, Gulf of California. Geochim. Cosmochim. Acta 52, 345–357 (1988).

    Google Scholar 

  44. Dick, G. J. & Tebo, B. M. Microbial diversity and biogeochemistry of the Guaymas deep-sea hydrothermal plume. Environ. Microbiol. 12, 1334–1347 (2010).

    Google Scholar 

  45. Dick, G. J. et al. The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats. Front. Microbiol. 4, 124 (2013).

    Google Scholar 

  46. Cowen, J. P., Massoth, G. J. & Feely, R. A. Scavenging rates of dissolved manganese in a hydrothermal vent plume. Deep Sea Res. Pt A 37, 1619–1637 (1990).

    Google Scholar 

  47. Kleint, C., Pichler, T. & Koschinsky, A. Geochemical characteristics, speciation and size-fractionation of iron (Fe) in two marine shallow-water hydrothermal systems, Dominica, Lesser Antilles. Chem. Geol. 454, 44–53 (2017).

    Google Scholar 

  48. Martin, J. H. & Knauer, G. A. Manganese cycling in northeast Pacific waters. Earth Planet. Sci. Lett. 51, 266–274 (1980).

    Google Scholar 

  49. Boyd, P. W., Ellwood, M. J., Tagliabue, A. & Twining, B. S. Biotic and abiotic retention, recycling and remineralization of metals in the ocean. Nat. Geosci. 10, 167–173 (2017).

    Google Scholar 

  50. Bishop, J. K. B. & Fleisher, M. Q. Particulate manganese dynamics in Gulf Stream warm-core rings and surrounding waters of the N. W. Atlantic. Geochim. Cosmochim. Acta 51, 2807–2825 (1987).

    Google Scholar 

  51. van Hulten, M. et al. Manganese in the west Atlantic Ocean in the context of the first global circulation model of manganese. Biogeosciences 14, 1123–1152 (2017).

    Google Scholar 

  52. Cron, B. R. et al. Dynamic biogeochemistry of the particulate sulfur pool in a buoyant dep-sea hydrothermal plume. ACS Earth Space Chem. 4, 168–182 (2020).

    Google Scholar 

  53. Bergquist, B. A., Wu, J. & Boyle, E. A. Variability in oceanic dissolved iron is dominated by the colloidal fraction. Geochim. Cosmochim. Acta 71, 2960–2974 (2007).

    Google Scholar 

  54. Rudnicki, M. D. & Elderfield, H. A chemical model of the bouyant and neutrally bouyant plume above the TAG vent field, 26 degrees N, Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 57, 2939–2957 (1993).

    Google Scholar 

  55. Massoth, G. J. et al. Manganese and iron in hydrothermal plumes resulting from the 1996 Gorda Ridge event. Deep Sea Res. Pt II 45, 2683–2712 (1998).

    Google Scholar 

  56. Coale, K. H., Chin, C. S., Massoth, G. J., Johnson, K. S. & Baker, E. T. In situ chemical mapping of dissolved iron and manganese in hydrothermal plumes. Nature 352, 325–328 (1991).

    Google Scholar 

  57. Millero, F. J., Sotolongo, S. & Izaguirre, M. The oxidation kinetics Fe(ii) in seawater. Geochim. Cosmochim. Acta 51, 793–801 (1987).

    Google Scholar 

  58. Bennett, S. A. et al. Iron isotope fractionation in a buoyant hydrothermal plume, 5° S Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 73, 5619–5634 (2009).

    Google Scholar 

  59. Rouxel, O., Toner, B. M., Manganini, S. J. & German, C. R. Geochemistry and iron isotope systematics of hydrothermal plume fall-out at East Pacific Rise 9° 50’ N. Chem. Geol. 441, 212–234 (2016).

    Google Scholar 

  60. Little, S. H., Vance, D., McManus, J., Severmann, S. & Lyons, T. W. Copper isotope signatures in modern marine sediments. Geochim. Cosmochim. Acta 212, 253–273 (2017).

    Google Scholar 

  61. Roshan, S., Wu, J. & Jenkins, W. J. Long-range transport of hydrothermal dissolved Zn in the tropical South Pacific. Mar. Chem. 183, 25–32 (2016).

    Google Scholar 

  62. Coogan, L. A. & Dosso, S. An internally consistent, probabilistic, determination of ridge-axis hydrothermal fluxes from basalt-hosted systems. Earth Planet Sci. Lett. 323–324, 92–101 (2012).

    Google Scholar 

  63. Elderfield, H. & Schultz, A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 24, 191–224 (1996).

    Google Scholar 

  64. Feely, R. A. et al. The relationship between P/Fe and V/Fe ratios in hydrothermal precipitates and dissolved phosphate in seawater. Geophys. Res. Lett. 25, 2253–2256 (1988).

    Google Scholar 

  65. Feely, R. A. et al. Composition and sedimentation of hydrothermal plume particles from north Cleft segment, Juan de Fuca Ridge. J. Geophys. Res. 99, 4985–5006 (1994).

    Google Scholar 

  66. Sarradin, P. M. et al. Speciation of dissolved copper within an active hydrothermal edifice on the Lucky Strike vent field (MAR, 37° N). Sci. Total Environ. 407, 869–878 (2009).

    Google Scholar 

Download references

Acknowledgements

A.G. thanks P. Lam and her laboratory group for valuable discussions regarding an early version of the concepts presented in this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.G. and A.J.F. conceived of and wrote the manuscript.

Corresponding author

Correspondence to Amy Gartman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor: Rebecca Neely.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gartman, A., Findlay, A.J. Impacts of hydrothermal plume processes on oceanic metal cycles and transport. Nat. Geosci. 13, 396–402 (2020). https://doi.org/10.1038/s41561-020-0579-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-020-0579-0

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene