Skip to main content
Log in

Nonlinear optical properties of n-type asymmetric double \(\delta \)-doped quantum wells: role of high-frequency laser radiation, doping concentration and well width

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A numerical investigation on the nonlinear optical rectification, second and third harmonic generation coefficients in asymmetric double n-type \(\delta \)-doped GaAs quantum well is performed in order to identify the influence of non-resonant intense laser radiation, doping concentration and the change in well widths. The energy eigenvalues and the corresponding eigenfunctions are determined by using effective-mass and parabolic band approximations. The working analytical expressions for the optical coefficients are derived from the iterative solving of compact-density matrix description of dielectric susceptibility. The obtained results reveal that the position and amplitude of the nonlinear optical rectification, second and third harmonic generation coefficients can be altered by modifying the external field as well as the compositional and geometrical setups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E. Rosencher, P. Bois, J. Nagle, E. Costard, S. Delaitre, Appl. Phys. Lett. 55, 1597–1599 (1989)

    ADS  Google Scholar 

  2. A. Bitz, M. Marsi, E. Tuncel, S. Gürtler, J.L. Staehli, B.J. Vartanian, M.J. Shaw, A.F.G. van der Meer, Phys. Rev. B 56, 10428–10434 (1997)

    ADS  Google Scholar 

  3. A. D’Andrea, N. Tomassini, L. Ferrari, M. Righini, S. Selci, M.R. Bruni, D. Schiumarini, M.G. Simeone, Phys. Stat. Sol. (A) 164, 383–386 (1997)

    ADS  Google Scholar 

  4. C. Sirtori, F. Capasso, D.L. Sivco, A.Y. Cho, Phys. Rev. Lett. 68, 1010–1013 (1992)

    ADS  Google Scholar 

  5. E. Rosencher, Ph Bois, Phys. Rev. B 44, 11315–11327 (1991)

    ADS  Google Scholar 

  6. H. Hassanabadi, G. Liu, L. Lu, Solid State Commun. 152, 1761–1766 (2012)

    ADS  Google Scholar 

  7. S. Mou, K. Guo, B. Xiao, Superlattices Microstruct. 65, 309–318 (2014)

    ADS  Google Scholar 

  8. M.J. Karimi, H. Vafaei, Superlattices Microstruct. 78, 1–11 (2015)

    ADS  Google Scholar 

  9. M.J. Karimi, A. Keshavarz, G. Rezaei, J. Comput. Theor. Nanosci. 8, 1340–1345 (2011)

    Google Scholar 

  10. K. Li, K. Gu, X. Jiang, M. Hu, Optik 132, 375–381 (2017)

    ADS  Google Scholar 

  11. J.C. Martínez-Orozco, M.E. Mora-Ramos, C.A. Duque, J. Lumin. 132, 449–456 (2012)

    Google Scholar 

  12. F. Ungan, S. Pal, M.K. Bahar, M.E. Mora-Ramos, Phys. E Low-dimens. Syst. Nanostruct. 113, 86–91 (2019)

    ADS  Google Scholar 

  13. H. Sari, F. Ungan, E. Kasapoglu, S. Sakiroglu, I. Sokmen, Philos. Mag. 99, 2444–2456 (2019)

    ADS  Google Scholar 

  14. O. Ozturk, E. Ozturk, S. Elagoz, Phys. Scr. 94, 115809 (2019)

    ADS  Google Scholar 

  15. B.K. Panda, S. Panda, Superlattices Microstruct. 61, 124–133 (2013)

    ADS  Google Scholar 

  16. F. Ungan, H. Sari, E. Kasapoglu, U. Yesilgul, S. Sakiroglu, I. Sokmen, J. Nanosci. Nanotechnol. 19, 4167–4171 (2019)

    Google Scholar 

  17. S. Sakiroglu, F. Ungan, U. Yesilgul, M.E. Mora-Ramos, C.A. Duque, E. Kasapoglu, H. Sari, I. Sokmen, Phys. Lett. A 376, 1875–1880 (2012)

    ADS  Google Scholar 

  18. O. Aytekin, S. Turgut, M. Tomak, Phys. E Low-dimens. Syst. Nanostruct. 44, 1612–1616 (2012)

    ADS  Google Scholar 

  19. F. Ungan, J.C. Martínez-Orozco, R.L. Restrepo, M.E. Mora-Ramos, E. Kasapoglu, C.A. Duque, Superlattices Microstruct. 81, 26–33 (2015)

    ADS  Google Scholar 

  20. U. Yesilgul, H. Sari, F. Ungan, J.C. Martínez-Orozco, R.L. Restrepo, M.E. Mora-Ramos, C.A. Duque, I. Sokmen, Chem. Phys. 485–486, 81–87 (2017)

    Google Scholar 

  21. R.L. Restrepo, J.P. González-Pereira, E. Kasapoglu, A.L. Morales, C.A. Duque, Opt. Mater. 86, 590–599 (2018)

    ADS  Google Scholar 

  22. S. Pal, M. Ghosh, Opt. Quantum Electron. 48, 372 (2016)

    Google Scholar 

  23. J. Ganguly, M. Ghosh, Phys. Status Solidi B 253, 1093–1103 (2016)

    ADS  Google Scholar 

  24. S. Saha, M. Ghosh, J. Phys. Chem. Solids 90, 69–79 (2016)

    ADS  Google Scholar 

  25. S. Baskoutas, E. Paspalakis, A.F. Terzis, Phys. Rev. B 74, 153306 (2006)

    ADS  Google Scholar 

  26. G. Liu, K. Guo, Q. Wu, J.H. Wu, Superlattices Microstruct. 53, 173–183 (2013)

    ADS  Google Scholar 

  27. C.H. Liu, K.-X. Guo, C.Y. Chen, B.K. Ma, Phys. E 15, 217–228 (2002)

    Google Scholar 

  28. C.J. Zhang, K.X. Guo, Phys. B 383, 183–187 (2006)

    ADS  Google Scholar 

  29. N. Li, K.X. Guo, S. Shao, Superlattices Microstruct. 49, 468–476 (2011)

    ADS  Google Scholar 

  30. Y.B. Yu, K.X. Guo, S.N. Zhu, Phys. E 27, 62–66 (2005)

    ADS  Google Scholar 

  31. N. Li, K.X. Guo, G.H. Liu, Superlattices Microstruct. 52, 41–49 (2012)

    ADS  Google Scholar 

  32. L. Ioriatti, Phys. Rev. B 41, 8340–8344 (1990)

    ADS  Google Scholar 

  33. M. Gavrila, J.Z. Kaminski, Phys. Rev. Lett. 52, 613–616 (1984)

    ADS  Google Scholar 

  34. F. Ehlotzky, Phys. Lett. A 126, 524–527 (1988)

    ADS  Google Scholar 

  35. F.M.S. Lima, M.A. Amato, O.A.C. Nunes, A.L.A. Fonseca, B.G. Enders, E.F. da Silva Jr, J. Appl. Phys. 105, 123111 (2009)

    ADS  Google Scholar 

  36. J.-B. Xia, W.-J. Fan, Phys. Rev. B 40, 8508–8515 (1989)

    ADS  Google Scholar 

  37. S. Shao, K.-X. Guo, Z.-H. Zhang, N. Li, C. Peng, Solid State Commun. 151, 289–292 (2011)

    ADS  Google Scholar 

  38. F. Ungan, S. Pal, M.K. Bahar, M.E. Mora-Ramos, Superlattices Microstruct. 130, 76–86 (2019)

    ADS  Google Scholar 

  39. H. Sari, E. Kasapoglu, S. Sakiroglu, U. Yesilgul, F. Ungan, I. Sökmen, Phys. E 90, 214–217 (2017)

    Google Scholar 

  40. F. Ungan, M.E. Mora-Ramos, E. Kasapoglu, H. Sari, I. Sökmen, Optics 180, 387–393 (2019)

    ADS  Google Scholar 

  41. K.A. Rodríguez-Magdaleno, J.C. Martínez-Orozco, I. Rodríguez-Vargas, M.E. Mora-Ramos, C.A. Duque, J. Lumin. 147, 77–84 (2014)

    Google Scholar 

  42. F. Ungan, E. Ozturk, Y. Ergun, I. Sokmen, Superlattices Microstruct. 41, 22–28 (2007)

    ADS  Google Scholar 

  43. O. Ozturk, E. Ozturk, S. Elagoz, J. Mol. Struct. 1156, 726–732 (2018)

    ADS  Google Scholar 

  44. H.S. Aydinoglu, S. Sakiroglu, H. Sari, F. Ungan, I. Sökmen, Philos. Mag. 98, 2151–2163 (2018)

    ADS  Google Scholar 

Download references

Acknowledgements

MEMR thanks Universidad de Medellín for hospitality and support during 2019–2020 sabbatical stay. He also acknowledges Mexican Conacyt for partial support through research Grant No. A1-S-8218 (CB 2017–2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysevil Salman Durmuslar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durmuslar, A.S., Mora-Ramos, M.E. & Ungan, F. Nonlinear optical properties of n-type asymmetric double \(\delta \)-doped quantum wells: role of high-frequency laser radiation, doping concentration and well width. Eur. Phys. J. Plus 135, 442 (2020). https://doi.org/10.1140/epjp/s13360-020-00465-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00465-x

Navigation