Skip to main content

Advertisement

Log in

Progress in the Study of Transient Luminous and Atmospheric Events: A Review

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Transient luminous events (TLEs) such as sprites, blue jets (BJs) and elves have been studied intensively during the last three decades, and much is now known of their properties. This progress is caused by several factors including satellite optical observations, ground-based measurements of sprite-produced electromagnetic fields, the use of high-speed video observations and telescopic cameras with high resolution that enables one to trace the dynamics of sprite and BJ development. In this paper, we review various types of TLEs, including recently discovered dancing sprites, gnomes, ultraviolet (UV) atmospheric flashes and other effects. The sprite initiation, visible evolution, streamer structure, and their relationship with intra-cloud (IC) process are discussed. Considerable study has been given to ULF/ELF measurements which can provide us with important information on the delayed sprite generation and the role played by IC processes in the perturbation of the lower ionosphere above the sprite. A set of electrodynamic and transport kinetic equations describing the TLEs are complicated because the number densities, mobilities of electrons and ions, reaction constants and other parameters are strongly dependent on altitude. Because of this, the majority of theoretical study of TLEs and other large-scale optical phenomena at high altitude are based on numerical modeling of the basic kinetic, transport and electrodynamic equations describing TLEs evolution, whereas the analytical theory remains a formidable task to be accomplished. In this paper, we review a few analytical results, which have been recently derived from simple physical models of the TLEs phenomena. In the remainder of this paper, we focus our attention on the properties of UV flashes in the mesosphere, which have been observed onboard Russian microsatellites “Universitetsky-Tanyana” and “Vernov.” Such a kind of optical flash is referred to as a transient atmospheric event, which differs from the TLEs in optical energy, duration and other parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Taken from da Silva and Pasko (2013b)

Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Adachi T, Sato M, Ushio T, Yamazaki A, Suzuki M, Kikuchi M, Takahashi Y, Inan US, Linscott I, Hobara Y, Frey HU, Mende SB, Chen AB, Hsu R-R, Kusunoki K (2016) Identifying the occurrence of lightning and transient luminous events by nadir spectrophotometric observation. J Atmos Sol-Terr Phys 145:85–97. https://doi.org/10.1016/j.jastp.2016.04.010

    Article  Google Scholar 

  • Allen NL, Ghaffar A (1995) The conditions required for propagation of cathode-directed positive streamer in air. J Phys D Appl Phys 28:331–337

    Google Scholar 

  • Aramyan A, Galechyan GA, Harutyunyan GG (2008) Superluminescence of atomic oxygen in the upper atmosphere. Laser Phys 18(7):835–841

    Google Scholar 

  • Asano T, Suzuki T, Hayakawa M, Cho MG (2009b) Three-dimensional EM computer simulation on sprite initiation above a horizontal lightning discharge. J Atmos Solar- Terr Phys 71:983–990

    Google Scholar 

  • Asano T, Suzuki T, Hiraki Y, Mareev E, Cho MG, Hayakawa M (2009a) Computer simulations on sprite initiation for realistic lightning models with higher-frequency surges. J Geophys Res 114:A02310. https://doi.org/10.1029/2008JA013651

    Article  Google Scholar 

  • Babaeva NY, Naidis GV (1997) Dynamics of positive and negative streamers in air in weak uniform electric fields. IEEE Trans Plasma Sci 25:375–379

    Google Scholar 

  • Barrington-Leigh CP, Inan US (1999) Sprites triggered by negative lightning discharges. Geophys Res Lett 26(24):3605–3608. https://doi.org/10.1029/1999GL010692

    Article  Google Scholar 

  • Bazelyan EM, Raizer YP (1998) Spark discharge. CRC Press, Boca Raton

    Google Scholar 

  • Bazelyan EM, Raizer YP, Aleksandrov NL (2007) The effect of reduced air density on streamer-to-leader transition and on properties of long positive leader. J Phys D Appl Phys 40:4134–4144. https://doi.org/10.1088/0022-3727/40/14/007

    Article  Google Scholar 

  • Bazelyan EM, Valamat-Zade TG, Shkilev AV (1975) A long spark in the presence of reduced air density. Izv Akad Nauk SSSR Energ Transp 13:149

    Google Scholar 

  • Blanc E, Farges T, Roche R, Brebion D, Hua T, Labarthe A, Melnikov V (2004) Nadir observations of sprites from the International Space Station. J Geophys Res 109(A02306):1–8. https://doi.org/10.1029/2003JA009972

    Article  Google Scholar 

  • Boccippio DJ, Williams ER, Heckman SJ, Lyons WA, Baker IT, Boldi R (1995) Sprites, ELF transients, and positive ground strokes. Science 269:1088–1091

    Google Scholar 

  • Boeck WL, Vaughan OH Jr, Blakeslee R, Vonnegut B, Brook M (1992) Lightning induced brightening in the airglow layer. Geophys Res Lett 19:99–102

    Google Scholar 

  • Boeck WL, Vaughan OH Jr, Blakeslee RJ, Vonnegut B, Brook M (1998) The role of the space shuttle videotapes in the discovery of sprites, jets and elves. J Atmos Solar-Terr Phys 60:669–677

    Google Scholar 

  • Boeck WL, Vaughan OH Jr, Blakeslee RJ, Vonnegut B, Brook M, McKune J (1995) Observations of lightning in the stratosphere. J Geophys Res 100:1465–1475

    Google Scholar 

  • Boggs LD, Liu N, Splitt M, Lazarus S, Glenn C, Rassoul H, Cummer SA (2016) An analysis of five negative sprite-parent discharges and their associated thunderstorm charge structures. J Geophys Res Atmos 121:759–784. https://doi.org/10.1002/2015JD024188

    Article  Google Scholar 

  • Bór J, Zelkó Z, Hegedüs T, Jäger Z, Mlynarczyk J, Popek M, Betz HD (2018) On the series of +CG lightning strokes in dancing sprite events. J Geophys Res Atmos 123:11030–11047. https://doi.org/10.1029/2017JD028251

    Article  Google Scholar 

  • Chanrion O, Neubert T, Mogensen A, Yair Y, Stendel M, Siingh SR (2017) Profuse activity of blue electrical discharges at the tops of thunderstorms. Geophys Res Lett 44(1):496–503. https://doi.org/10.1002/2016GL071311

    Article  Google Scholar 

  • Chanrion O, Neubert T, Rasmussen IL, Stoltze C, Tcherniak D, Jessen NC, Polny J, Brauer P, Balling JE, Kristensen SS, Forchhammer S, Hofmeyer P, Davidsen P, Mikkelsen O, Hansen DB, Bhanderi DV,·Petersen CG,·Lorenzen M (2019) The Modular Multispectral Imaging Array (MMIA) of the ASIM payload on the International Space Station. Space Sci Rev. Doi: 10.1007/s11214-019-0593-y

  • Chen B-C, Chen H, Chuang CW, Cummer SA, Lu G, Fang HK, Su H-T, Hsu R-R (2019) On negative sprites and the polarity paradox. Geophys Res Lett 46:9370–9378. https://doi.org/10.1029/2019GL083804

    Article  Google Scholar 

  • Chen AB, Kuo C-L, Lee Y-J, Su H-T, Hsu R-R, Chern J-L, Frey HU, Mende SB, Takahashi Y, Fukunishi H, Chang Y-S, Liu T-Y, Lee L-C (2008) Global distributions and occurrence rates of transient luminous events. J Geophys Res 113:A08306. https://doi.org/10.1029/2008JA013101

    Article  Google Scholar 

  • Cheng Z, Cummer SA, Su HT, Hsu RR (2007) Broadband very low frequency measurement of D region ionospheric perturbations caused by lightning electromagnetic pulses. J Geophys Res 112:A06318. https://doi.org/10.1029/2006JA011840

    Article  Google Scholar 

  • Chern JL, Hsu RR, Su HT, Mende SB, Fukunishi H, Takahashi Y, Lee LC (2003) Global survey of upper atmospheric transient luminous events on the ROCSAT-2 satellite. J Atmos Solar-Terr Phys 65:647–659

    Google Scholar 

  • Cho M, Rycroft MJ (1998) Computer simulation of the electric field structure and optical emission from cloud-top to the ionosphere. J Atmos Solar-Terr Phys 60:871–888

    Google Scholar 

  • Chou JK, Hsu RR, Su HT, Chen ABC, Kuo CL, Huang SM, Chang SC, Peng KM, Wu YJ (2018) ISUAL-observed blue luminous events: the associated sferics. J Geophys Res Space Phys 123:3063–3077. https://doi.org/10.1002/2017JA024793

    Article  Google Scholar 

  • Chou JK, Tsai LY, Kuo CL, Lee YJ, Chen CM, Chen AB, Su HT, Hsu RR, Chang PL, Lee LC (2011) Optical emissions and behaviors of the blue starters, blue jets, and gigantic jets observed in the Taiwan transient luminous event ground campaign. J Geophys Res 116:A07301. https://doi.org/10.1029/2010JA016162

    Article  Google Scholar 

  • Cooray V (2015) An introduction to lightning. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8938-7

    Book  Google Scholar 

  • Cotts BRT, Inan US (2007) VLF observation of long ionospheric recovery events. Geophys Res Lett 34:L14809. https://doi.org/10.1029/2007GL030094

    Article  Google Scholar 

  • Cummer SA, Füllekrug M (2001) Unusually intense CC in lightning produces delayed mesospheric breakdown. Geophys Res Lett 28:495–498

    Google Scholar 

  • Cummer SA (2003) Current moment in sprite-producing lightning. J Atmos Solar-Terr Phys 65:499–508

    Google Scholar 

  • Cummer SA, Frey HU, Mende SB, Hsu R-R, Su H-T, Chen AB, Fukunishi H, Takahashi Y (2006a) Simultaneous radio and satellite optical measurements of high-altitude sprite current and lightning continuing current. J Geophys Res 111:A10315. https://doi.org/10.1029/2006JA011809

    Article  Google Scholar 

  • Cummer SA, Inan US, Bell TF, Barrington-Leigh CP (1998) ELF radiation produced by electrical currents in sprites. Geophys Res Lett 25:1281–1284

    Google Scholar 

  • Cummer SA, Jaugey N, Li J, Lyons WA, Nelson TE, Gerken EA (2006b) Submillisecond imaging of sprite development and structure. Geophys Res Lett 33:L04104. https://doi.org/10.1029/2005GL024969

    Article  Google Scholar 

  • Cummer SA, Li J, Han F, Lu G, Jaugey N, Lyons WA, Nelson TE (2009) Quantification of the troposphere-to-ionosphere charge transfer in a gigantic jet. Nature Geosci 2:1–4. https://doi.org/10.1038/NGEO607

    Article  Google Scholar 

  • Cummer SA, Lyons WA, Stanley MA (2013) Three years of lightning impulse charge moment change measurements in the United States. J Geophys Res: Atmos 118:5176–5189. https://doi.org/10.1002/jgrd.50442

    Article  Google Scholar 

  • da Silva CL, Pasko VP (2012) Simulation of leader speeds at gigantic jet altitudes. Geophys Res Lett 39:L13805. https://doi.org/10.1029/2012GL052251

    Article  Google Scholar 

  • da Silva CL, Pasko VP (2013a) Vertical structuring of gigantic jets. Geophys Res Lett 40:3315–3319. https://doi.org/10.1002/grl.50596

    Article  Google Scholar 

  • da Silva CL, Pasko VP (2013b) Dynamics of streamer-to-leader transition at reduced air densities and its implications for propagation of lightning leaders and gigantic jets. J Geophys Res Atmos 118:13561–13590. https://doi.org/10.1002/2013JD020618

    Article  Google Scholar 

  • da Silva CL, Sabbas FTS (2013c) Consequences of the application of the streamer fluid model to the study of the sprite inception mechanism. Adv Space Res 51(10):1902–1915. https://doi.org/10.1016/j.asr.2012.11.025

    Article  Google Scholar 

  • Douglas-Hamilton DH, Mani SA (1974) Attachment instability in an externally ionized discharge. J Appl Phys 45:4406. https://doi.org/10.1063/1.1663065

    Article  Google Scholar 

  • Ebert U, Sentman D (2008) Editorial review: streamers, sprites, leaders, lightning: from micro- to macroscales. J Phys D Appl Phys 41(23):230301. https://doi.org/10.1088/0022-3727/41/23/230301

    Article  Google Scholar 

  • Ebert U, Nijdam S, Li C, Luque A, Briels T, van Veldhuizen E (2010) Review of recent results on streamer discharges and discussion of their relevance for sprites and lightning. J Geophys Res 115:A00E43. https://doi.org/10.1029/2009JA014867

    Article  Google Scholar 

  • Edens HE (2011) Photographic and lightning mapping observations of a blue starter over a New Mexico thunderstorm. Geophys Res Lett 38:L17804. https://doi.org/10.1029/2011GL048543

    Article  Google Scholar 

  • Franz RC, Nemzak RJ, Winkler JR (1990) Television image of a large upward electrical discharge above a thunderstorm system. Science 249:48–51

    Google Scholar 

  • Fukunishi H, Takahashi Y, Fujito M, Wanatabe Y, Sakanoi S (1996) Fast imagining of elves and sprites using a framing/streak camera and a multi-anode array photometer. EOS Trans AGU Fall Meet Suppl 77:F60

    Google Scholar 

  • Fukunishi H, Takahashi Y, Uchida A, Sera M, Adachi K, Miyasato R (1999) Occurrences of sprites and elves above the Sea of Japan near Hokuriku in winter. EOS Trans AGU Fall Meet Suppl 80:F27

    Google Scholar 

  • Füllekrug M, Moudry DR, Dawes G, Sentman DD (2001) Mesospheric sprite current triangulation. J Geophys Res 106(D17):20189–20194. https://doi.org/10.1029/2001JD900075

    Article  Google Scholar 

  • Garipov GK, Khrenov BA, Panasyuk MI, Tulupov VI, Shirokov AV, Yashin IV, Salazar H (2005) UV radiation from the atmosphere: results of the MSU “Tatiana” satellite measurements. Astroparticle Phys 24:400–408

    Google Scholar 

  • Garipov GK, Khrenov BA, Klimov PA, Klimenko VV, Mareev EA, Martines O, Mendoza E, Morozenko VS, Panasyuk MI, Park IH, Ponce E, Rivera L, Salazar H, Tulupov VI, Vedenkin NN, Yashin IV (2013) Global transients in ultraviolet and red-infrared ranges from data of Universitetsky-Tatiana-2 satellite. J Geophys Res Atmos 118:370–379. https://doi.org/10.1029/2012JD017501

    Article  Google Scholar 

  • Garipov GK, Panasyuk MI, Rubinshtein IA, Tulupov VI, Khrenov BA, Shirokov AV, Yashin IV, Salazar H (2006) Ultraviolet radiation detector of the MSU research educational microsatellite Universitetskii-Tat’yana. Instrum Exp Tech 49:126–131. https://doi.org/10.1134/S0020441206010180

    Article  Google Scholar 

  • Gerken EA, Inan US, Barrington-Leigh CP (2000) Telescopic imaging of sprites. Geophys Res Lett 27(17):2637–2640

    Google Scholar 

  • Glukhov V, Pasko V, Inan U (1992) Relaxation of transient lower ionospheric disturbances caused by lightning-whistler-induced electron precipitation bursts. J Geophys Res 97:16971–16979

    Google Scholar 

  • Gordillo-Vázquez FJ, Passas M, Luque A, Sánchez J, van der Velde OA, Montanyà J (2018) High spectral resolution spectroscopy of sprites: A natural probe of the mesosphere. J Geophys Res Atmos 123(4):2336–2346. https://doi.org/10.1002/2017JD028126

    Article  Google Scholar 

  • Gurevich AV, Milikh GM, Roussel-Dupré R (1992) Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm. Phys Lett A 165:463–468

    Google Scholar 

  • Gurevich AV, Milikh GM, Roussel-Dupré R (1994) Nonuniform runaway air-breakdown. Phys Lett A 187:197–203

    Google Scholar 

  • Gurevich AV, Zybin KP (2001) Runaway breakdown and electric discharges in thunderstorm. Phys Uspekhi 44:1119–1140

    Google Scholar 

  • Haldoupis C, Amvrosiadi N, Cotts BRT, van der Velde OA, Chanrion O, Neubert T (2010) More evidence for a one-to-one correlation between Sprites and Early VLF perturbations. J Geophys Res 115:A07304. https://doi.org/10.1029/2009JA015165

    Article  Google Scholar 

  • Haldoupis C, Cohen M, Cotts B, Arnone E, Inan U (2012) Long-lasting D-region ionospheric modifications, caused by intense lightning in association with elve and sprite pairs. Geophys Res Let 39:L16801. https://doi.org/10.1029/2012GL052765

    Article  Google Scholar 

  • Haldoupis C, Cohen M, Arnone E, Cotts B, Dietrich S (2013) The VLF fingerprint of elves: Step-like and long-recovery early VLF perturbations caused by powerful ±CG lightning EM pulses. J Geophys Res Space Physics 118:5392–5402. https://doi.org/10.1002/jgra.50489

    Article  Google Scholar 

  • Haldoupis C, Mika Á, Shalimov S (2009) Modeling the relaxation of early VLF perturbations associated with transient luminous events. J Geophys Res 114:A00E04. https://doi.org/10.1029/2009JA014313

    Article  Google Scholar 

  • Haldoupis C, Steiner RJ, Mika Á, Shalimov S, Marshall RA, Inan US, Bösinger T, Neubert T (2006) “Early/slow” events: a new category of VLF perturbations observed in relation with sprites. J Geophys Res 111:A11321. https://doi.org/10.1029/2006JA011960

    Article  Google Scholar 

  • Hardman SF, Dowden RL, Brundell JB, Bahr L, Kawasaki Z, Rodger CJ (1998) Sprites in Australia’s Northern Territory. EOS Trans AGU Fall Meet Suppl 79:F135

    Google Scholar 

  • Hayakawa M, Iudin DI, Mareev EA, Trakhtengertz VY (2007) Cellular automaton modelling of mesospheric optical emissions: Sprites. Phys Plasma 14(4):042902–042902–6

    Google Scholar 

  • Hayakawa M, Nakamura T, Hobara Y, Williams E (2004) Observation of sprites over the Sea of Japan and conditions for lightning-induced sprites in winter. J Geophys Res 105:4689–4697

    Google Scholar 

  • Heavner MJ, Hampton D, Sentman D, Wescott E (1995) Sprites over Central and South America. EOS Trans AGU Fall Meet Suppl 76(46):F115

    Google Scholar 

  • Heavner MJ, Sentman DD, Moudry DR, Wescott EM (2000) Sprites, blue jets, and elves: optical evidence of energy transport across the stratopause. In: Siskind DE, Eckermann SD, Summers ME (eds) Atmospheric science across the stratosphere, vol 123. Geophysical monograph series. AGU, Washington DC, pp 69–82

    Google Scholar 

  • Hiraki Y, Fukunishi H (2006) Theoretical criterion of charge moment change by lightning for initiation of sprites. J Geophys Res 111:A11305. https://doi.org/10.1029/2006JA011729

    Article  Google Scholar 

  • Hobara Y, Hayakawa M, Williams E, Boldi R, Downes E (2006) Location and electrical properties of sprite-producing lightning from a single ELF site. In: Füllekrug M, Mareev EA, Rycroft MJ (eds) Sprites, Elves and Intense Lightning Discharges, vol 225. NATO Science Series, II. Springer, Dordrecht, pp 211–235

    Google Scholar 

  • Hobara Y, Iwasaki N, Hayashida T, Hayakawa M, Ohta K, Fukunishi H (2001) Interrelation between ELF transients and ionospheric disturbances in association with sprites and elves. Geophys Res Lett 28(5):935–938. https://doi.org/10.1029/2000GL003795

    Article  Google Scholar 

  • Holzworth RH, McCarthy MP, Thomas JN, Chinowsky TM, Taylor MJ, Pinto O (2003) Strong electric fields from positive lightning strokes in the stratosphere: implications for sprites. EOS Trans AGU Fall Meet Suppl 84(46):AE51A-01

    Google Scholar 

  • Hsu RR, Su HT, Chen AB, Lee LC, Asfur M, Price C, Yair Y (2003) Transient luminous events in the vicinity of Taiwan. J Atmos Solar-Terr Phys 65(5):561–566. https://doi.org/10.1016/s1364-6826(02)00320-6

    Article  Google Scholar 

  • Hu W, Cummer SA, Lyons WA (2007) Testing sprite initiation theory using lightning measurements and modeled EM fields. J Geophys Res 112:D13115. https://doi.org/10.1029/2006JD007939

    Article  Google Scholar 

  • Hu W, Cummer SA, Lyons WA, Nelson TE (2002) Lightning charge moment changes for the initiation of sprites. Geophys Res Lett 29(8):120-1–120-4. https://doi.org/10.1029/2001GL014593

    Article  Google Scholar 

  • Inan US (2002) Lightning effects at high altitudes: sprites, elves, and terrestrial gamma ray flashes. C R Acad Sci Phys 3(10):1411–1422

    Google Scholar 

  • Inan US, Barrington-Leigh C, Hansen S, Glukhov VS, Bell TF, Rairden R (1997) Rapid lateral expansion of optical luminosity in lightning-induced ionospheric flashes referred to as “elves”. Geophys Res Lett 24:583–586

    Google Scholar 

  • Inan US, Bell TF, Pasko VP, Sentman DD, Wescott EM, Lyons WA (1995) VLF signatures of ionospheric disturbances associated with sprites. Geophys Res Lett 22:3461–3464. https://doi.org/10.1029/95GL03507

    Article  Google Scholar 

  • Inan US, Sampson WA, Taranenko YN (1996) Spacetime structure of optical flashes and ionization changes produced by lightning-EMP. Geophys Res Lett 23:133–136. https://doi.org/10.1029/95GL03816

    Article  Google Scholar 

  • Inan US, Cummer SA, Marshall RA (2010) A survey of ELF and VLF research on lightning-ionosphere interactions and causative discharges. J Geophys Res 115:A00E36. https://doi.org/10.1029/2009JA014775

    Article  Google Scholar 

  • Kabirzadeh R, Marshall RA, Inan US (2017) Early/fast VLF events produced by the quiescent heating of the lower ionosphere by thunderstorms. J Geophys Res Atmos 122:6217–6230. https://doi.org/10.1002/2017JD026528

    Article  Google Scholar 

  • Kanmae T, Stenbaek-Nielsen HC, McHarg MG, Haaland RK (2012) Diameter-speed relation of sprite streamers. J Phys D Appl Phys 45:275203. https://doi.org/10.1088/0022-3727/45/27/275203

    Article  Google Scholar 

  • Klimov P, Garipov G, Khrenov B, Morozenko V, Barinova V, Bogomolov V, Kaznacheeva M, Panasyuk M, Saleev K, Svertilov S (2017) Vernov satellite data of transient atmospheric events. J Appl Meteorol Climatol 56:2189–2201. https://doi.org/10.1175/JAMC-D-16-0309.1

    Article  Google Scholar 

  • Kosar BC, Liu N, Rassoul HK (2012) Luminosity and propagation characteristics of sprite streamers initiated from small ionospheric disturbances at subbreakdown conditions. J Geophys Res 117:A08328. https://doi.org/10.1029/2012JA017632

    Article  Google Scholar 

  • Kotovsky DA, Moore RC (2017) Modeling long recovery early events (LOREs) produced by lightning-induced ionization of the nighttime upper mesosphere. J Geophys Res Space Phys 122:7761–7780. https://doi.org/10.1002/2017JA023996

    Article  Google Scholar 

  • Krehbiel PR, Riousset JA, Pasko VP, Thomas RJ, Rison W, Stanley MA, Edens HE (2008) Upward electrical discharges from thunderstorms. Nat Geosci 1:233–237. https://doi.org/10.1038/ngeo162

    Article  Google Scholar 

  • Kuo C, Chou JJ, Tsai LY, Chen B, Su H-T, Hsu RR, Cummer SA, Frey HU, Mende SB, Takahashi Y, Lee LC (2009) Discharge process, electric field, and electron energy in ISUAL-recorded gigantic jets. J Geophys Res 114:A04314. https://doi.org/10.1029/2008JA013791

    Article  Google Scholar 

  • Kuo CL (2012) The middle atmosphere: discharge phenomena. In: Ghadawala R (ed) Advances in spacecraft systems and orbit determination. InTech, Shanghai, pp 1–28

    Google Scholar 

  • Kuo CL, Su HT, Hsu RR (2015) The blue luminous events observed by ISUAL payload on board FORMOSAT-2 satellite. J Geophys Res Space Phys 120:9795–9804. https://doi.org/10.1002/2015JA021386

    Article  Google Scholar 

  • Landau LD, Lifshitz EM (1960) Electrodynamics of continuous media volume 8 of a course of theoretical physics. Pergamon Press, Oxford

    Google Scholar 

  • Lehtinen NG, Inan US (2007) Possible persistent ionization caused by giant blue jets. Geophys Res Lett 34:L08804. https://doi.org/10.1029/2006GL029051

    Article  Google Scholar 

  • Li J, Cummer SA (2009) Measurement of sprite streamer acceleration and deceleration. Geophys Res Lett 36:L10812. https://doi.org/10.1029/2009GL037581

    Article  Google Scholar 

  • Li J, Cummer S, Lu G, Zigoneanu L (2012) Charge moment change and lightning-driven electric fields associated with negative sprites and halos. J Geophys Res 117:A09310. https://doi.org/10.1029/2012JA017731

    Article  Google Scholar 

  • Li J, Cummer SA, Lyons WA, Nelson TE (2008) Coordinated analysis of delayed sprites with high-speed images and remote electromagnetic fields. J Geophys Res 113:D20206. https://doi.org/10.1029/2008JD010008

    Article  Google Scholar 

  • Lieberman MA, Lichtenberg AJ (1994) Principles of plasma discharges and materials processing. Wiley, New York

    Google Scholar 

  • Liu NY, McHarg MG, Stenbaek-Nielsen HC (2015) High-altitude electrical discharges associated with thunderstorms and lightning. J Atmos Solar-Terr Phys 136:98–118. https://doi.org/10.1016/j.jastp.2015.05.013

    Article  Google Scholar 

  • Liu NY, Pasko VP (2006) Effects of photoionization on similarity properties of streamers at various pressures in air. J Phys D Appl Phys 39:327–334. https://doi.org/10.1088/0022-3727/39/2/013

    Article  Google Scholar 

  • Liu NY, Pasko VP, Adams K, Stenbaek-Nielsen HC, McHarg MG (2009) Comparison of acceleration, expansion, and brightness of sprite streamers obtained from modeling and high-speed video observations. J Geophys Res 114:A00E03. https://doi.org/10.1029/2008JA013720

    Article  Google Scholar 

  • Lu G, Cummer SA, Li J, Zigoneanu L, Lyons WA, Stanley MA, Rison W, Krehbiel PR, Edens HE, Thomas RJ, Beasley WH, Weiss SA, Blakeslee RJ, Bruning EC, MacGorman DR, Meyer TC, Palivec K, Ashcraft T, Samaras T (2013) Coordinated observations of sprites and in-cloud lightning flash structure. J Geophys Res Atmos 118:6607–6632. https://doi.org/10.1002/jgrd.50459

    Article  Google Scholar 

  • Lu G, Cummer SA, Lyons WA, Krehbiel PR, Li J, Rison W, Thomas RJ, Edens HE, Stanley MA, Beasley W, MacGorman DR, van der Velde OA, Cohen MB, Lang TJ, Rutledge SA (2011GL) Lightning development associated with two negative gigantic jets. Geophys Res Lett 38:L12801. https://doi.org/10.1029/2011GL047662

    Article  Google Scholar 

  • Luque A, Ebert U (2009) Emergence of sprite streamers from screening-ionization waves in the lower ionosphere. Nat Geosci 2(11):757–760. https://doi.org/10.1038/ngeo662

    Article  Google Scholar 

  • Luque A, Ebert U (2010) Sprites in varying air density: Charge conservation, glowing negative trails and changing velocity. Geophys Res Lett 37:L06806. https://doi.org/10.1029/2009GL041982

    Article  Google Scholar 

  • Luque A, Stenbaek-Nielsen HC, McHarg MG, Haaland RK (2016) Sprite beads and glows arising from the attachment instability in streamer channels. J Geophys Res Space Phys 121:2431–2449. https://doi.org/10.1002/2015JA022234

    Article  Google Scholar 

  • Lyons WA (1994) Characteristics of luminous structures in the stratosphere above thunderstorms as imaged by low-light video. Geophys Res Lett 21(10):875–878. https://doi.org/10.1029/94GL00560

    Article  Google Scholar 

  • Lyons WA, Nelson TE, Armstrong RA, Pasko VP, Stanley MA (2003) Upward electrical discharges from thunderstorm tops. Bull Am Meteorol Soc 84(4):445–454. https://doi.org/10.1175/BAMS-84-4-445

    Article  Google Scholar 

  • Lyons WA, Stanley M, Nelson TE, Taylor M (2000) Sprites, elves, halos, trolls, and blue starters above the STEPS domain. EOS Trans AGU 81(48):F131

    Google Scholar 

  • Marshall RA (2012) An improved model of the lightning electromagnetic field interaction with the D-region ionosphere. J Geophys Res 117:A03316. https://doi.org/10.1029/2011JA017408

    Article  Google Scholar 

  • Marshall T, McCarthy M, Rust W (1996) Electric field magnitudes and lightning initiation in thunderclouds. J Geophys Res 100:7097–7104

    Google Scholar 

  • Marshall RA, Inan US, Lyons WA (2007) Very low frequency sferic bursts, sprites, and their association with lightning activity. J Geophys Res 112:D22105. https://doi.org/10.1029/2007JD008857

    Article  Google Scholar 

  • Marshall RA, Newsome RT, Inan US (2008) Fast photometric imaging using orthogonal linear arrays. IEEE Trans Geosci Remote Sens 46(11):3885–3893

    Google Scholar 

  • Marshall RA, da Silva CL, Pasko VP (2015b) Elve doublets and compact intracloud discharges. Geophys Res Lett 42:6112–6119. https://doi.org/10.1002/2015GL064862

    Article  Google Scholar 

  • Marshall RA, Yue J, Lyons WA (2015a) Numerical simulation of an elve modulated by a gravity wave. Geophys Res Lett 42:6120–6127. https://doi.org/10.1002/2015GL064913

    Article  Google Scholar 

  • Matsudo Y, Suzuki T, Hayakawa M, Yamashita K, Ando Y, Michimoto K, Korepanov V (2007) Characteristics of Japanese winter sprites and their parent lightning as estimated by VHF lightning and ELF transients. J Atmos Solar-Terr Phys 69:1431–1446

    Google Scholar 

  • Matsudo Y, Suzuki T, Michimoto K, Myokei K, Hayakawa M (2009) Comparison of time delay of sprites induced by winter lightning flashes in the Japan Sea with those in the Pacific Ocean. J Atmos Solar-Terr Phys 71:101–111

    Google Scholar 

  • McHarg MG, Haaland RK, Moudry D, Stenbaek-Nielsen HC (2002) Altitude-time development of sprites. J Geophys Res 107(A11):1364. https://doi.org/10.1029/2001JA000283

    Article  Google Scholar 

  • McHarg MG, Stenbaek-Nielsen HC, Kammae T (2007) Observations of streamer formation in sprites. Geophys Res Lett 34:L06804. https://doi.org/10.1029/2006GL027854

    Article  Google Scholar 

  • Mende SB, Frey HU, Hsu RR, Su HT, Chen AB, Lee LC, Sentman DD, Takahashi Y, Fukunishi H (2005) D region ionization by lightning-induced electromagnetic pulses. J Geophys Res 110:11312. https://doi.org/10.1029/2005JA011064

    Article  Google Scholar 

  • Meyer TC, Lang TJ, Rutledge SA, Lyons WA, Cummer SA, Lu G, Lindsey DT (2013) Radar and lightning analyses of gigantic jet-producing storms. J Geophys Res Atmos 118:2872–2888. https://doi.org/10.1002/jgrd.50302

    Article  Google Scholar 

  • Milikh GM, Shneider MN, Mokrov MS (2014) Model of blue jet formation and propagation in the nonuniform atmosphere. J Geophys Res Space Physics 119:5821–5829. https://doi.org/10.1002/2014JA020123

    Article  Google Scholar 

  • Milikh GM, Valdivia JA, Papadopoulos K (1998) Spectrum of red sprites. J Atmos Solar-Terr Phys 60:907–915. https://doi.org/10.1016/S1364-6826(98)00032-7

    Article  Google Scholar 

  • Mishin EV, Milikh G (2008) Blue jets: upward lightning. Space Sci Rev 137(1–4):473–488

    Google Scholar 

  • Montijn C, Ebert U (2006) Diffusion correction to the Raether-Meek criterion for the avalanche-to-streamer transition. J Phys D App Phys 39(14):2979–2992. https://doi.org/10.1088/0022-3727/39/14/017

    Article  Google Scholar 

  • Myokei K, Matsudo Y, Asano T, Suzuki T, Hobara Y, Michimoto K, Hayakawa M (2009) A study of the morphology of winter sprites in the Hokuriku area of Japan in relation to cloud height. J Atmos Solar-Terr Phys 71:597–602

    Google Scholar 

  • Neubert T, Allin TH, Blanc E, Farges T, Haldoupis C, Mika Á, Soula S, Knutsson L, van der Velde O, Marshall RA, Inan U, Sátori G, Bór J, Hughes A, Collier A, Laursen S, Rasmussen IL (2005) Co-ordinated observations of transient luminous events during the Eurosprite 2003 campaign. J Atmos Solar-Terr Phys 67:807–820. https://doi.org/10.1016/j.jastp.2005.02.004

    Article  Google Scholar 

  • Neubert T, Allin TH, Stenbaek-Nielsen H, Blanc E (2001) Sprites over Europe. Geophys Res Lett 28(18):3585–3588. https://doi.org/10.1029/2001GL013427

    Article  Google Scholar 

  • Neubert T, Chanrion O, Arnone E, Zanotti F, Cummer S, Li J, Füllekrug M, Soula S, van der Velde O (2011) The properties of a gigantic jet reflected in a simultaneous sprite: Observations interpreted by a mode. J Geophys Res 116:A12329. https://doi.org/10.1029/2011JA016928

    Article  Google Scholar 

  • Neubert T, Rycroft M, Farges T, Blanc E, Chanrion O, Arnone E, Odzimek A, Arnold N, Enell CF, Turunen E, Bösinger T, Mika Á, Haldoupis C, Steiner RJ, van der Velde O, Soula O, Berg P, Boberg F, Thejll P, Christiansen B, Ignaccolo M, Füllekrug M, Verronen PT, Crosby MJ (2008) Recent results from studies of electric discharges in the mesosphere. Surv Geophys 29(2):71–137

    Google Scholar 

  • Neubert T, Østgaard N, Reglero V, Blanc E, Chanrion O, Oxborrow CA, Orr A, Tacconi M, Hartnack O, Bhanderi DDV (2019) The ASIM mission on the International Space Station. Space Sci Rev. https://doi.org/10.1007/s11214-019-0592-z

    Article  Google Scholar 

  • Newsome RT, Inan US (2010) Free-running ground-based photometric array imaging of transient luminous events. J Geophys Res 115:A00E41. https://doi.org/10.1029/2009JA014834

    Article  Google Scholar 

  • Nickolaenko AP, Hayakawa M (1995) Heating of the lower ionosphere electrons by electromagnetic radiation of lightning discharges. Geophys Res Lett 22:3015–3018

    Google Scholar 

  • Ohkubo A, Fukunishi H, Takahashi Y, Adachi T (2005) VLF/ELF sferic evidence for in-cloud discharge activity producing sprites. Geophys Res Lett 32:L04812. https://doi.org/10.1029/2004GL021943

    Article  Google Scholar 

  • Otsuyama T, Manaba J, Hayakawa M, Nishimura M (2004) Characteristics of subionospheric VLF perturbation associated with winter lightning around Japan. Geophys Res Lett 31:L04117. https://doi.org/10.1029/2003GL019064

    Article  Google Scholar 

  • Østgaard N,·Balling JE, Bjørnsen T, Brauer P,·Budtz-Jørgensen C,·Bujwan W,·Carlson B, Christiansen F, Connell P,·Eyles C, Fehlker D, Genov G, Grudziński P, Kochkin P,·Kohfeldt A, Kuvvetli I,·Thomsen PL,·Pedersen SM,·Navarro-Gonzalez J, Neubert T,·Njøten K,·Orleanski P, Qureshi BH,·Cenkeramaddi LR,·Reglero V, Reina M, Rodrigo JM,·Rostad M, Sabau MD,·Kristensen SS,·Skogseide Y, Solberg A,·Stadsnes J,·Ullaland K, Yang S (2019) The Modular X- and Gamma-Ray Sensor (MXGS) of the ASIM Payload on the International Space Station. Space Sci Rev. https://doi.org/10.1007/s11214-018-0573-7

  • Panasyuk MI, Bogomolov VV, Garipov GK, Grigoryan OR, Denisov YI, Khrenov BA, Klimov PA, Lazutin LL, Svertilov SI, Vedenkin NN, Yashin IV, Klimov SI, Zeleny LM, Makhmutov VS, Stozkov YI, Svirzhevsky NS, Klimenko VV, Mareev EA, Shlyugaev YV, Korepanov VE, Park IH, Rothkaehl SHI (2010) Transient luminous event phenomena and energetic particles impacting the upper atmosphere: Russian space experiment programs. J Geophys Res 115(A6):A00E33. https://doi.org/10.1029/2009JA014763

    Article  Google Scholar 

  • Pasko VP, Inan US, Bell TF (2000) Fractal structure of sprites. Geophys Res Lett 27:497–500

    Google Scholar 

  • Pasko VP, Inan US, Bell TF (2001) Mesosphere-ionosphere coupling due to sprites. Geophys Res Lett 28:3821–3824

    Google Scholar 

  • Pasko VP, Stanley MA, Mathews JD, Inan US, Wood TG (2002) Electrical discharge from a thundercloud top to the lower ionosphere. Nature 416(6877):152–154. https://doi.org/10.1038/416152a

    Article  Google Scholar 

  • Pasko VP (2006) Theoretical modeling of sprites and jets. In: Füllekrug M, Mareev EA, Rycroft MJ (eds) Sprites, elves and intense lightning discharges, NATO science series II: mathematics, physics and chemistry, vol 225. Springer, Heidleberg, pp 253–311

    Google Scholar 

  • Pasko VP (2007) Red sprite discharges in the atmosphere at high altitude: the molecular physics and the similarity with laboratory discharges. Plasma Sources Sci Technol 16:S13–S29. https://doi.org/10.1088/0963-0252/16/1/S02

    Article  Google Scholar 

  • Pasko VP (2008) Blue jets and gigantic jets: transient luminous events between thunderstorm tops and the lower ionosphere. Plasma Phys Control Fusion 50(12):124050. https://doi.org/10.1088/0741-3335/50/12/124050

    Article  Google Scholar 

  • Pasko VP (2010) Recent advances in theory of transient luminous events. J Geophys Res 50(6):A00E35. https://doi.org/10.1029/2009JA014860

    Article  Google Scholar 

  • Pasko VP, Yair Y, Kuo C-L (2012) Lightning related transient luminous events at high altitude in the Earth’s atmosphere: phenomenology, mechanisms and effects. Space Sci Rev 168(1–4):475–516. https://doi.org/10.1007/s11214-011-9813-9

    Article  Google Scholar 

  • Pasko VP, Qin J, Celestin S (2013) Toward better understanding of sprite streamers: Initiation, morphology, and polarity asymmetry. Surv Geophys 34(6):797–830. https://doi.org/10.1007/s10712-013-9246-y

    Article  Google Scholar 

  • Petrov NI, Petrova GN (1999) Physical mechanism for the development of lightning discharges between a thundercloud and the ionosphere. Tech Phys 44:472–475

    Google Scholar 

  • Pinto O Jr, Saba MMF, Pinto IRCA, Tavares FSS, Naccarato KP, Solorzano NN, Taylor MJ, Pautet PD, Holzworth RH (2004) Thunderstorm and lightning characteristics associated with sprites in Brazil. Geophys Res Lett 31:L13103. https://doi.org/10.1029/2004GL020264

    Article  Google Scholar 

  • Popov NA (2003) Formation and development of a leader channel in air. Plasma Phys Rep 29(8):695–708

    Google Scholar 

  • Qin J, Celestin S, Pasko VP (2011) On the inception of streamers from sprite halo events produced by lightning discharges with positive and negative polarity. J Geophys Res 116:A06305. https://doi.org/10.1029/2010JA016366

    Article  Google Scholar 

  • Qin J, Celestin S, Pasko VP (2013) Dependence of positive and negative sprite morphology on lightning characteristics and upper atmospheric ambient conditions. J Geophys Res Space Phys 118(5):2623–2638. https://doi.org/10.1029/2012JA017908

    Article  Google Scholar 

  • Qin J, Pasko VP (2015) Dynamics of sprite streamers in varying air density. Geophys Res Lett 42:2031–2036. https://doi.org/10.1002/2015GL063269

    Article  Google Scholar 

  • Qin J, Pasko VP, McHarg MG, Stenbaek-Nielsen HC (2014) Plasma irregularities in the D-region ionosphere in association with sprite streamer initiation. Nat Commun 5:1–6. https://doi.org/10.1038/ncomms4740

    Article  Google Scholar 

  • Raizer YP (1991) Gas discharge physics. Springer, Berlin

    Google Scholar 

  • Raizer YP, Milikh GM, Shneider MN (2006) On the mechanism of blue jet formation and propagation. Geophys Res Lett 33:L23801. https://doi.org/10.1029/2006GL027697

    Article  Google Scholar 

  • Raizer YP, Milikh GM, Shneider MN (2007) Leader-streamer nature of blue jets. J Atmos Solar-Terr Phys 69:925–938. https://doi.org/10.1016/j.jastp.2007.02.007

    Article  Google Scholar 

  • Raizer YP, Milikh GM, Shneider MN (2010) Streamer- and leader-like processes in the upper atmosphere: models of red sprites and blue jets. J Geophys Res 115:A00E42. https://doi.org/10.1029/2009JA014645

    Article  Google Scholar 

  • Rakov VA, Tuni WG (2003) Lightning electric field intensity at high altitudes: inferences for production of elves. J Geophys Res 108(D20):4639. https://doi.org/10.1029/2003JD003618

    Article  Google Scholar 

  • Rakov VA (2000) Positive and bipolar lightning discharges: a review. In: Proceedings 25th International Conference Lightning Protection, Rhodos, pp 103–108.

  • Rakov VA, Uman MA (2003) Lightning: physics and effects. Cambridge University Press, Cambridge, U. K.

    Google Scholar 

  • Riousset JA, Pasko VP, Krehbiel PR, Rison W, Stanley MA (2010) Modeling of thundercloud screening charges: implications for blue and gigantic jets. J Geophys Res 115:10. https://doi.org/10.1029/2009JA014286

    Article  Google Scholar 

  • Rodger CJ (1999) Red sprites, upward lightning and VLF perturbations. Rev Geophys 37:317–336

    Google Scholar 

  • Roussel-Dupré R, Gurevich A (1996) On runaway breakdown and upward propagating discharges. J Geophys Res 101:2297–2311

    Google Scholar 

  • Roussel-Dupré R, Colman JJ, Symbalisty E, Sentman D, Pasko VP (2008) Physical processes related to discharges in planetary atmospheres. Space Sci Rev 137(1–4):51–82

    Google Scholar 

  • Rowland HL (1998) Theories and simulations of elves, sprites and blue jets. J Atmos Solar-Terr Phys 60:831–844

    Google Scholar 

  • Rycroft MJ (2006) Introduction to the physics of sprites, elves and intense lightning discharges. In: Füllekrug M, Mareev EA, Rycroft MJ (eds) Sprites, elves and intense lightning discharges, NATO Science Series, II, vol 225. Springer, Dordrecht, pp 1–18

    Google Scholar 

  • Sadovnichy VA, Panasyuk MI, Bobrovnikov SY, Vedenkin NN, Vlasova NA, Garipov GK, Grigorian OR, Ivanova TA, Kalegaev VV, Klimov PA, Kovtyukh AS, Krasotkin SA, Kuznetsov NV, Kuznetsov SN, Muravyeva EA, Myagkova IN, Pavlov NN, Nymmik RA, Petrov VL, Podzolko MV, Radchenko VV, Reisman SY, Rubinshtein IA, Riazantseva MO, Sigaeva EA, Sosnovets EN, Starostin LI, Sukhanov AV, Tulupov VI, Khrenov BA, Shakhparonov VM, Sheveleva VN, Shirokov AV, Yashin IV, Markelov VV, Ivanov NN, Blinov VN, Sedykh OY, Pinigin VP, Papkov AP, Levin ES, Samkov VM, Ignatiev NN, Yamnikov VS (2007) First results of investigating the space environment onboard Universitetskii-Tatyana satellite. Cosmic Res 45:273–286. https://doi.org/10.1134/S0010952507040016

    Article  Google Scholar 

  • Sadovnichy VA, Panasyuk MI, Yashin IV, Barinova VO, Vedenkin NN, Vlasova NA, Garipov GK, Grigoryan OR, Ivanova TA, Kalegaev VV, Klimov PA, Kovtyukh AS, Krasotkin SA, Kuznetsov NV, Kuznetsov SN, Muraveva EA, Myagkova IN, Nymmik RA, Pavlov NN, Parunakyan DA, Petrov AN, Petrov VL, Podzolko MV, Radchenko VV, Reizman SY, Rubinshtein IA, Ryazantseva MO, Sigaeva EA, Sosnovets EN, Starostin LI, Tulupov VI, Khrenov BA, Shakhparonov VM, Shirokov AV, Bobrovnikov SY, Aleksandrov VV, Lemak SS, Morozenko VS, Zhuravlev VM, Mareev EA, Blinov VN, Ivanov NN, Kozhevnikov VA, Makridenko LA, Krasnopeev VM, Papkov AP, Lee J, Park I, Cotzomi J, Martinez O, Ponce E, Salazar H (2011) Investigations of the space environment aboard the Universitetsky-Tan’yana-2 microsatellites. Sol Syst Res 45:3–29. https://doi.org/10.1134/S0038094611010096

    Article  Google Scholar 

  • Sampath HT, Inan US, Johnson MP (2000) Recovery signatures and occurrence properties of lightning-associated Subionospheric VLF perturbations. J Geophys Res 105(A1):183–191

    Google Scholar 

  • Sato M, Adachi T, Ushio T, Morimoto T, Kikuchi M, Kikuchi H, Suzuki M, Yamazaki A, Takahashi Y, Ishida R, Sakamoto Y, Yoshida K, Hobara Y (2017) Sprites identification and their spatial distributions in JEM-GLIMS nadir observations. Terr Atmos Ocean Sci 28:545–561. https://doi.org/10.3319/TAO.2016.09.21.02

    Article  Google Scholar 

  • Sato M, Mihara M, Adachi T, Ushio T, Morimoto T, Kikuchi M, Kikuchi H, Suzuki M, Yamazaki A, Takahashi Y, Inan U, Linscott I, Ishida R, Sakamoto Y, Yoshida K, Hobara Y (2016) Horizontal distributions of sprites derived from the JEM-GLIMS nadir observations. J Geophys Res Atmosphere 121(7):3171–3194. https://doi.org/10.1002/2015JD024311

    Article  Google Scholar 

  • Sentman DD, Wescott EM (1993) Observations of upper atmosphere optical flashes recorded from an aircraft. Geophys Res Lett 20:2857–2860

    Google Scholar 

  • Sentman DD, Wescott EM, Heavner M, Moudry D (1996) Observations of sprite beads and balls. Eos Trans AGU 77(46):F61

    Google Scholar 

  • Sentman DD, Wescott EM, Osborne DL, Hampton DL, Heavner MJ (1995) Preliminary results from the Sprites94 campaign: Red Sprites. Geophys Res Lett 22:1205–1208

    Google Scholar 

  • Siingh D, Singh AK, Patel RP, Singh R, Singh RP, Veenadhari B, Mukherjee M (2008) Thunderstorms, lightning, sprites and magnetospheric whistler-mode radio waves. Surv Geophys 29(6):499–551

    Google Scholar 

  • Soula S, Mlynarczyk J, Füllekrug M, Pineda N, Georgis J-F, van der Velde O, Montanyà J, Fabró F (2017) Dancing sprites: detailed analysis of two case studies. J Geophys Res Atmos 122(6):3173–3192

    Google Scholar 

  • Soula S, van der Velde OA, Montanyá J, Huet P, Barthe C, Bór J (2011) Gigantic jets produced by an isolated tropical thunderstorm near Réunion Island. J Geophys Res 116:D19103. https://doi.org/10.1029/2010JD015581

    Article  Google Scholar 

  • Soula S, van der Velde OA, Palmiéri J, Chanrion O, Neubert T, Montanyá J, Fabrice G, Meyerfeld Y, Lefeuvre F, Lointier G (2010) Characteristics and conditions of production of transient luminous events observed over a maritime storm. J Geophys Res 115(D16):D16118. https://doi.org/10.1029/2009JD012066

    Article  Google Scholar 

  • Stanley M, Brook M, Krehbiel P, Cummer S (2000) Detection of daytime sprites via a unique sprite ELF signature. Geophys Res Lett 27:871–874

    Google Scholar 

  • Stanley M, Krehbiel P, Brook M, Moore C, Rison W, Abrahams B (1999) High speed video of initial sprite development. Geophys Res Lett 26:3201–3204

    Google Scholar 

  • Stenbaek-Nielsen HC, Kanmae T, McHarg MG, Haaland R (2013) High-speed observations of sprite streamers. Surv Geophys 34(6):769–795. https://doi.org/10.1007/s10712-013-9224-4

    Article  Google Scholar 

  • Stenbaek-Nielsen HC, McHarg MG, Kanmae T, Sentman DD (2007) Observed emission rates in sprite streamer heads. Geophys Res Lett 34:L11105. https://doi.org/10.1029/2007GL029881

    Article  Google Scholar 

  • Stenbaek-Nielsen HC, Moudry DR, Wescott EM, Sentman DD, Sao Sabbas FT (2000) Sprites and possible mesospheric effects. Geophys Res Lett 27:3829–3832

    Google Scholar 

  • Su HT, Hsu RR, Chen AB, Lee YJ, Lee LC (2002) Observation of sprites over the Asian continent and over oceans around Taiwan. Geophys Res Lett 29(4):31–34. https://doi.org/10.1029/2001GL013737

    Article  Google Scholar 

  • Su HT, Hsu RR, Chen AB, Wang YC, Hsiao WS, Lai WC, Lee LC, Sato M, Fukunishi H (2003) Gigantic jets between a thundercloud and the ionosphere. Nature 423:974–976. https://doi.org/10.1038/nature01759

    Article  Google Scholar 

  • Surkov VV, Hayakawa M (2012) Underlying mechanisms of transient luminous events: a review. Ann Geophys 30(8):1185–1212. https://doi.org/10.5194/angeo-30-1185-2012

    Article  Google Scholar 

  • Surkov V, Hayakawa M (2014) Ultra and extremely low frequency electromagnetic fields. Springer Geophysics Series, XVI, Springer

    Google Scholar 

  • Surkov VV, Hayakawa M (2016) Semi-analytical models of the sprite generation from plasma heterogeneities. Geomag Aeron 56(6):724–732. https://doi.org/10.1134/S0016793216050145

    Article  Google Scholar 

  • Surkov VV, Matsudo Y, Hayakawa M, Goncharov SV (2010) Estimation of lightning and sprite parameters based on observation of sprite-producing lightning power spectra. J Atmos Solar-Terr Phys 72:448–456. https://doi.org/10.1016/j.jastp.2010.01.001

    Article  Google Scholar 

  • Taylor MJ, Bailey MA, Pautet PD, Cummer SA, Jaugey N, Thomas JN, Solorzano NN, Sao Sabbas F, Holzworth RH, Pinto O, Schuch NJ (2008) Rare measurements of a sprite with halo event driven by a negative lightning discharge over Argentina. Geophys Res Lett 35:L14812. https://doi.org/10.1029/2008GL033984

    Article  Google Scholar 

  • Valdivia JA, Milikh G, Papadopoulos K (1997) Red sprites: Lightning as a fractal antenna. Geophys Res Lett 24(24):3169–3172. https://doi.org/10.1029/97GL03188

    Article  Google Scholar 

  • Vedenkin NN, Garipov GK, Klimov PA, Klimenko VV, Mareev EA, Martinez O, Morozenko VS, Park I, Panasyuk MI, Ponce E, Salazar H, Tulupov VI, Khrenov BA, Yashin IV (2011) Atmospheric ultraviolet and red-infrared flashes from Universitetsky-Tatiana-2 satellite data. Sov J Exp Theor Phys 113:781–790. https://doi.org/10.1134/S1063776111130139

    Article  Google Scholar 

  • van der Velde OA, Bór J, Li J, Cummer SA, Arnone E, Zanotti F, Füllekrug M, Haldoupis C, NaitAmor S, Farges T (2010) Multi-instrumental observations of a positive gigantic jet produced by a winter thunderstorm in Europe. J Geophys Res 115:D24301. https://doi.org/10.1029/2010JD014442

    Article  Google Scholar 

  • van der Velde OA, Mika Á, Soula S, Haldoupis C, Neubert T, Inan US (2006) Observations of the relationship between sprite morphology and in-cloud lightning processes. J Geophys Res 111:D15203. https://doi.org/10.1029/2005JD006879

    Article  Google Scholar 

  • van der Velde OA, Lyons WA, Nelson TE, Cummer SA, Li J, Bunnell J (2007) Analysis of the first gigantic jet recorded over continental North America. J Geophys Res 112:D20104. https://doi.org/10.1029/2007JD008575

    Article  Google Scholar 

  • van der Velde OA, Montanyà J, López JA, Cummer SA (2019) Gigantic jet discharges evolve stepwise through the middle atmosphere. Nat Commun 10(1):4350. https://doi.org/10.1038/s41467-019-12261-y

    Article  Google Scholar 

  • Wescott EM, Sentman D, Osborne D, Hampton D, Heavner M (1995) Preliminary results from the Sprites94 aircraft campaign, 2, Blue jets. Geophys Res Lett 22:1209–1212. https://doi.org/10.1029/95GL00582

    Article  Google Scholar 

  • Wescott EM, Sentman DD, Heavner MJ, Hampton DL, Osborne DLD, Vaugham Jr OH (1996) Blue starters: brief upward discharges from an intense Arkansas thunderstorm. Geophys Res Lett 23:2153–2156

    Google Scholar 

  • Wescott EM, Sentman DD, Heavner MJ, Hampton DL, Vaughan OH Jr (1998) Blue jets: their relationship to lightning and very large hailfall, and their physical mechanisms for their production. J Atmos Solar-Terr Phys 60:713–724

    Google Scholar 

  • Wescott EM, Sentman DD, Stenbaek-Nielsen H, Huet P, Heavner MJ, Moudry DR (2001) New evidence for the brightness and ionization of blue starters and blue jets. J Geophys Res 106:21549–21554

    Google Scholar 

  • Williams E, Downes E, Boldi R, Lyons W, Heckman S (2007) Polarity asymmetry of sprite-producing lightning: a paradox? Radio Sci 42:RS2S17. https://doi.org/10.1029/2006RS003488

    Article  Google Scholar 

  • Yair Y, Israelevich P, Devir AD, Moalem M, Price C, Joseph JH, Levin Z, Ziv B, Sternlieb A, Teller A (2004) New observations of sprites from space shuttle. J Geophys Res 109:D15201. https://doi.org/10.1029/2003JD004497

    Article  Google Scholar 

  • Yang J, Lu G, Lee L-J, Feng G (2015) Long-delayed bright dancing sprite with large horizontal displacement from its parent flash. J Atmos Solar-Terr Phys 129:1–5. https://doi.org/10.1016/j.jastp.2015.04.00

    Article  Google Scholar 

  • Yang J, Sato M, Liu NY, Lu GP, Wang Y, Wang ZC (2018) A gigantic jet observed over a MCS in middle latitude region. J Geophys Res Atmos 123(2):977–996. https://doi.org/10.1002/2017JD026878

    Article  Google Scholar 

  • Yashunin SA, Mareev EA, Rakov VA (2007) Are lightning M components capable of initiating sprites and sprite halo? J Geophys Res 112:D10109. https://doi.org/10.1029/2006JD007631

    Article  Google Scholar 

  • Yue J, Lyons WA (2015) Structured elves: Modulation by convectively generated gravity waves. Geophys Res Lett 42:1004–1011. https://doi.org/10.1002/2014GL062612

    Article  Google Scholar 

Download references

Acknowledgements

This study was partly supported by the Grant No. 18-05-00108 from Russian Foundation for Basic Research (RFBR). We appreciate useful comments of all reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim V. Surkov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surkov, V.V., Hayakawa, M. Progress in the Study of Transient Luminous and Atmospheric Events: A Review. Surv Geophys 41, 1101–1142 (2020). https://doi.org/10.1007/s10712-020-09597-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-020-09597-2

Keywords

Navigation