Skip to main content
Log in

Quasi-isotropic Biot’s Tensor for Anisotropic Porous Rocks: Experiments and Micromechanical Modelling

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Several experimental studies, carried out on anisotropic rocks, have evidenced that even though strains, due to isotropic loading and/or internal fluid pressure, are strongly anisotropic, the resulting Biot’s tensor is almost isotropic. Those results were found on two different rocks: a clay rock (France—Bure argillite) and a sandstone from the Vosges region (France). Such (a priori) surprising results led us to develop micromechanical modelling in which anisotropy comes either from an anisotropic solid matrix (and isotropic pore space) or from an anisotropic pore space (and isotropic solid matrix). The obtained results have shown that for both cases the Biot’s tensor is virtually isotropic or presents a very weak anisotropy. This unambiguously supports the fact that a strongly anisotropic porous material is compatible with experimental measurements of isotropic (or quasi isotropic) Biot’s tensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\({\varvec{\sigma }}\) :

Cauchy stress tensor

\({\varvec{\epsilon }}\) :

Infinitesimal strain tensor

\(\gamma \) :

Infinitesimal distortion strain

E :

Young’s modulus

\(\nu \) :

Poisson coefficient

b :

Biot’s coefficient (scalar)

\({\varvec{B}}\) :

Biot’s coefficient (tensorial)

H :

Expansion modulus

\(P_c\) :

Confining pressure

p :

Pore pressure

\(\mathbb {C}\) :

Fourth-rank stiffness tensor

\(\mathbb {C}^{dr}\) :

Fourth-rank drained stiffness tensor

\({\varvec{\delta }}\) :

Second-rank identity tensor

\(\mathbb {I}\) :

Symmetrized fourth-rank identity tensor

\(\mathbb {A}\) :

Fourth-rank strain concentration tensor

X :

Spheroidal inclusion aspect ratio

\(\mathbb {P}(X)\) :

Fourth-rank Hill tensor of a spheroidal inclusion

References

  • Biot M (1955) Theory of elasticity and consolidation for a porous anisotropic solid. J Appl Phys 26(2):182–185

    Article  Google Scholar 

  • Cheng AD (1997) Material coefficient of anisotropic poroelasticity. Int J Rock Mech Min Sci 34(2):199–205

    Article  Google Scholar 

  • Dormieux L, Ulm FJ, Kondo D (2006) Microporomechanics. Wiley, New York

    Book  Google Scholar 

  • Hu C, Agostini F, Skoczylas F, Jeannin L, Potier L (2018) Poromechanical properties of a sandstone under different stress. Rock Mech Rock Eng 51:120–132. https://doi.org/10.1007/s00603-018-1550-x

    Article  Google Scholar 

  • Mohajerani M, Delage P, Monfared M, Tang A, Sulem J, Gatmiri B (2011) Oedometric compression and swelling behaviour of the Callovo–Oxfordian argillite. Int J Rock Mech Min Sci 48(4):606–615

    Article  Google Scholar 

  • Song Y, Davy C, Troadec D, Blanchenet A, Skoczylas F, Talandier J, Robinet J (2015) Multi-scale pore structure of cox claystone: towards the prediction of fluid transport. Mar Pet Geol 65:63–82

    Article  Google Scholar 

  • Suarez-Rivera R, Fjær E (2013) Evaluating the poroelastic effect on anisotropic, organic rich, mudstone systems. Rock Mech Rock Eng 46:569–580

    Article  Google Scholar 

  • Wong TF (2017) Anisotropic poroelasticity in a rock with cracks. J Geophys Res Solid Earth 122:7739–7753

    Article  Google Scholar 

  • Yang D, Bornert M, Chanchole S, Gharbi H, Valli P, Gatmiri B (2012) Dependence of elastic properties of argillaceous rocks on moisture content investigated with optical full-field strain measurement techniques. Int J Rock Mech Min Sci 53:45–55

    Article  Google Scholar 

  • Yuan H, Agostini F, Duan Z, Skoczylas F, Talandier J (2018) Measurement of biot’s coefficient for cox argillite using gas pressure technique. Int J Rock Mech Min Sci Geomech Abstr 92:72–80

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Skoczylas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Hill Tensor of an Ellipsoid

Appendix: Hill Tensor of an Ellipsoid

Consider an ellipsoid defined by the equation:

$$\begin{aligned} {\varvec{z}}\cdot {\varvec{S}}\cdot {\varvec{z}}=1, \end{aligned}$$

where \({\varvec{S}}\) is a positive definite symmetric second-rank tensor. This ellipsoid is embedded in an infinite linear elastic medium with elastic stiffness tensor \(\mathbb {C}\). Let \({\varvec{\xi }}\) denote some vector on the unit sphere: \(|{\varvec{\xi }}|=1\). The associated acoustic tensor is \({\varvec{K}}={\varvec{\xi }}\cdot \mathbb {C}\cdot {\varvec{\xi }}\). The coefficient \(P_{ijkl}\) of the Hill tensor reads:

$$\begin{aligned} P_{ijkl}=\dfrac{\sqrt{\mathrm{det}\,{\varvec{S}}}}{4\pi }\int _{|{\varvec{\xi }}|=1}\dfrac{\left( \xi _j\xi _k\left( K^{-1}({\varvec{\xi }})\right) _{i\ell }\right) _{(ij),(k\ell )}}{\left( {\varvec{\xi }}\cdot {\varvec{S}}\cdot {\varvec{\xi }}\right) ^{3/2}}\,{\text {d}}S_\xi . \end{aligned}$$
(11)

In the above expression, the integral is taken with respect to \({\varvec{\xi }}\) over the unit sphere. The subscript \((ij),(k\ell )\) means that the expression is symmetrized w.r.t. the subscripts i and j, and w.r.t. the subscripts k and \(\ell \):

$$\begin{aligned} (A_{ijk\ell })_{(ij),(k\ell )}=\dfrac{1}{4}\left( A_{ijk\ell }+A_{jik\ell }+A_{ij\ell k}+A_{ji\ell k} \right) . \end{aligned}$$

In Sect. 3.1.2, the Hill tensor \(\mathbb {P}^m(\theta ,\phi ,X)\) refers to a spheroid with aspect ratio X, and a symmetry axis along the radial unit vector \({\varvec{e}}_r(\theta ,\phi )\):

$$\begin{aligned} {\varvec{e}}_r(\theta ,\phi )=\sin \theta \left( \cos \phi {\varvec{e}}_1+\sin \phi {\varvec{e}}_2\right) +\cos \theta {\varvec{e}}_3. \end{aligned}$$

It is recalled that the matrix is transversely isotropic (symmetry axis along \({\varvec{e}}_3\)). In the spherical basis \(({\varvec{e}}_r,{\varvec{e}}_\theta ,{\varvec{e}}_\phi )\), the tensor \({\varvec{S}}(\theta ,\phi ,X)\) of this spheroid reads:

$$\begin{aligned} {\varvec{S}}={\varvec{e}}_\theta \otimes {\varvec{e}}_\theta +{\varvec{e}}_\phi \otimes {\varvec{e}}_\phi +X^2{\varvec{e}}_r\otimes {\varvec{e}}_r. \end{aligned}$$

The integration variables in (11) are the two angles x and y that define the unit vector \({\varvec{\xi }}\):

$$\begin{aligned} {\varvec{\xi }}=\sin x\left( \cos y\,{\varvec{e}}_1+\sin y\,{\varvec{e}}_2\right) +\cos x\,{\varvec{e}}_3, \end{aligned}$$

where \({\text {d}}S_\xi =\sin x\,{\text {d}}x{\text {d}}y\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Lemarchand, E., Dormieux, L. et al. Quasi-isotropic Biot’s Tensor for Anisotropic Porous Rocks: Experiments and Micromechanical Modelling. Rock Mech Rock Eng 53, 4031–4041 (2020). https://doi.org/10.1007/s00603-020-02147-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-020-02147-7

Keywords

Navigation