Skip to main content
Log in

Kovalevskaya Exponents, Weak Painlevé Property and Integrability for Quasi-homogeneous Differential Systems

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We present some necessary conditions for quasi-homogeneous differential systems to be completely integrable via Kovalevskaya exponents. Then, as an application, we give a new link between the weak-Painlevé property and the algebraical integrability for polynomial differential systems. Additionally, we also formulate stronger theorems in terms of Kovalevskaya exponents for homogeneous Newton systems, a special class of quasi-homogeneous systems, which gives its necessary conditions for B-integrability and complete integrability. A consequence is that the nonrational Kovalevskaya exponents imply the nonexistence of Darboux first integrals for two-dimensional natural homogeneous polynomial Hamiltonian systems, which relates the singularity structure to the Darboux theory of integrability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ayoul, M. and Zung, N. T., Galoisian Obstructions to Non-Hamiltonian Integrability, C. R. Math. Acad. Sci. Paris, 2010, vol. 348, nos. 23–24, pp. 1323–1326.

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, V. I., Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), 1966, vol. 1, fasc. 1, pp. 319–361.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bogoyavlenski, O. I., Extended Integrability and Bi-Hamiltonian Systems, Comm. Math. Phys., 1998, vol. 196, no. 1, pp. 19–51.

    Article  MathSciNet  Google Scholar 

  4. Christopher, C., Llibre, J., and Pereira, J. V., Multiplicity of Invariant Algebraic Curves in Polynomial Vector Fields, Pacific J. Math., 2007, vol. 229, no. 1, pp. 63–117.

    Article  MathSciNet  MATH  Google Scholar 

  5. Darboux, G., Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré, Bulletin des Sciences Mathématiques et Astronomiques, Sér. 2, 1878, vol. 2, no. 1, pp. 60–96, 123–144, 151–200.

    MATH  Google Scholar 

  6. Duval, G. and Maciejewski, A. J., Jordan Obstruction to the Integrability of Hamiltonian Systems with Homogeneous Potentials, Ann. Inst. Fourier (Grenoble), 2009, vol. 59, no. 7, pp. 2839–2890.

    Article  MathSciNet  MATH  Google Scholar 

  7. Goriely, A., Integrability, Partial Integrability, and Nonintegrability for Systems of Ordinary Differential Equations, J. Math. Phys., 1996, vol. 37, no. 4, pp. 1871–1893.

    Article  MathSciNet  MATH  Google Scholar 

  8. Goriely, A., A Brief History of Kovalevskaya Exponents and Modern Developments: Sophia Kovalevskaya to the 150th Anniversary, Regul. Chaotic Dyn., 2000, vol. 5, no. 1, pp. 3–15.

    Article  MathSciNet  MATH  Google Scholar 

  9. Goriely, A., Integrability and Nonintegrability of Dynamical Systems, Adv. Ser. Nonlinear Dynam., vol. 19, River Edge, N.J.: World Sci., 2001.

    Book  MATH  Google Scholar 

  10. García, I. A., Grau, M., and Llibre, J., First Integrals and Darboux Polynomials of Natural Polynomial Hamiltonian Systems, Phys. Lett. A, 2010, vol. 374, no. 47, pp. 4746–4748.

    Article  MathSciNet  MATH  Google Scholar 

  11. Hietarinta, J., Direct Methods for the Search of the Second Invariant, Phys. Rep., 1987, vol. 147, no. 2, pp. 87–154.

    Article  MathSciNet  Google Scholar 

  12. Kozlov, V. V., Tensor Invariants of Quasihomogeneous Systems of Differential Equations, and the Asymptotic Kovalevskaya — Lyapunov Method, Math. Notes, 1992, vol. 51, nos. 1–2, pp. 138–142; see also: Mat. Zametki, 1992, vol. 51, no. 2, pp. 46–52.

    Article  MathSciNet  MATH  Google Scholar 

  13. Kummer, M., Churchill, R. C., and Rod, D. L., On Kowaleskaya Exponents, in Essays in Classical and Quantum Mechanics (Festschrift for A. W. Sáenz), J. A. Ellison, H. Überall (Eds.), Reading, Pa.: Gordon & Breach, 1991, pp. 71–76.

    Google Scholar 

  14. Kummer, M., Churchill, R. C., and Rod, D. L., On a Result of Bruns, Canad. Math. Bull., 1990, vol. 33, no. 2, pp. 175–180.

    Article  MathSciNet  MATH  Google Scholar 

  15. Kovacic, J. J., An Algorithm for Solving Second Order Linear Homogeneous Differential Equations, J. Symbolic Comput., 1986, vol. 2, no. 1, pp. 3–43.

    Article  MathSciNet  MATH  Google Scholar 

  16. Kimura, T., On Riemann’s Equations Which Are Solvable by Quadratures, Funkcial. Ekvac., 1969/70, vol. 12, pp. 269–281.

    MathSciNet  MATH  Google Scholar 

  17. Li, W. and Shi, Sh., Galoisian Obstruction to the Integrability of General Dynamical Systems, J. Differential Equations, 2012, vol. 252, no. 10, pp. 5518–5534.

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, W. and Shi, Sh., Weak-Painlevé Property and Integrability of General Dynamical Systems, Discrete Contin. Dyn. Syst., 2014, vol. 34, no. 9, pp. 3667–3681.

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, W., Shi, Sh., and Liu, B., Non-Integrability of a Class of Hamiltonian Systems, J. Math. Phys., 2011, vol. 52, no. 11, 112702, 12 pp.

    Article  MathSciNet  MATH  Google Scholar 

  20. Llibre, J., Valls, C., and Zhang, X., The Completely Integrable Differential Systems Are Essentially Linear Differential Systems, J. Nonlinear Sci., 2015, vol. 25, no. 4, pp. 815–826.

    Article  MathSciNet  MATH  Google Scholar 

  21. Llibre, J. and Medrado, J. C., On the Invariant Hyperplanes for d-Dimensional Polynomial Vector Fields, J. Phys. A, 2007, vol. 40, no. 29, pp. 8385–8391.

    Article  MathSciNet  MATH  Google Scholar 

  22. Llibre, J. and Pessoa, C., Homogeneous Polynomial Vector Fields of Degree 2 on the 2-Dimensional Sphere, Extracta Math., 2006, vol. 21, no. 2, pp. 167–190.

    MathSciNet  MATH  Google Scholar 

  23. Llibre, J. and Zhang, X., Darboux Theory of Integrability in n Taking into Account the Multiplicity, J. Differential Equations, 2009, vol. 246, no. 2, pp. 541–551.

    Article  MathSciNet  MATH  Google Scholar 

  24. Llibre, J. and Zhang, X., Darboux Theory of Integrability for Polynomial Vector Fields in n Taking into Account the Multiplicity at Infinity, Bull. Sci. Math., 2009, vol. 133, no. 7, pp. 765–778.

    Article  MathSciNet  MATH  Google Scholar 

  25. Llibre, J. and Valls, C., Darboux Integrability of Generalized Yang — Mills Hamiltonian System, J. Nonlinear Math. Phys., 2016, vol. 23, no. 2, pp. 234–242.

    Article  MathSciNet  MATH  Google Scholar 

  26. Llibre, J. and Valls, C., Darboux Integrability of 2-Dimensional Hamiltonian Systems with Homogenous Potentials of Degree 3, J. Math. Phys., 2014, vol. 55, no. 3, 033507, 12 pp.

    Article  MathSciNet  MATH  Google Scholar 

  27. Llibre, J. and Valls, C., Darboux Integrability of a Generalized Friedmann — Robertson — Walker Hamiltonian System, J. Nonlinear Math. Phys., 2013, vol. 20, no. 3, pp. 394–406.

    Article  MathSciNet  MATH  Google Scholar 

  28. Lundmark, H., Higher-Dimensional Integrable Newton Systems with Quadratic Integrals of Motion, Stud. Appl. Math., 2010, vol. 110, no. 3, pp. 257–296.

    Article  MathSciNet  MATH  Google Scholar 

  29. May, R. M. and Leonard, W. J., Nonlinear Aspects of Competition between Three Species, SIAM J. Appl. Math., 1975, vol. 29, no. 2, pp. 243–256.

    Article  MathSciNet  MATH  Google Scholar 

  30. Maciejewski, A. J. and Przybylska, M., Darboux Polynomials and First Integrals of Natural Polynomial Hamiltonian Systems, Phys. Lett. A, 2004, vol. 326, nos. 3–4, pp. 219–226.

    Article  MathSciNet  MATH  Google Scholar 

  31. Morales-Ruiz, J. J., Differential Galois Theory and Non-Integrability of Hamiltonian Systems, Progr. Math., vol. 179, Basel: Birkhäuser, 1999.

    Google Scholar 

  32. Ramani, A., Dorizzi, B., and Grammaticos, B., Painlevé Conjecture Revisited, Phys. Rev. Lett., 1982, vol. 49, no. 21, pp. 1539–1541.

    Article  MathSciNet  Google Scholar 

  33. Rañada, A. F., Ramani, A., Dorizzi, B., and Grammaticos, B., The weak-Painlevé Property As a Criterion for the Integrability of Dynamical Systems, J. Math. Phys., 1985, vol. 26, no. 4, pp. 708–710.

    Article  MathSciNet  MATH  Google Scholar 

  34. Shi, S., Zhu, W., and Liu, B., Non-Existence of First Integrals in a Laurent Polynomial Ring for General Semi-Quasihomogeneous Systems, Z. Angew. Math. Phys., 2006, vol. 57, no. 5, pp. 723–732.

    Article  MathSciNet  MATH  Google Scholar 

  35. Shi, S., On the Nonexistence of Rational First Integrals for Nonlinear Systems and Semiquasihomogeneous Systems, J. Math. Anal. Appl., 2007, vol. 335, no. 1, pp. 125–134.

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, C., Llibre, J., and Zhang, X., Generalized Rational First Integrals of Analytic Differential Systems, J. Differential Equations, 2011, vol. 251, no. 10, pp. 2770–2788.

    Article  MathSciNet  MATH  Google Scholar 

  37. Yoshida, H., Necessary Condition for the Existence of Algebraic First Integrals: 1. Kowalevski’s Exponents, Celestial Mech., 1983, vol. 31, no. 4, pp. 363–379.

    Article  MathSciNet  MATH  Google Scholar 

  38. Yoshida, H., Nonintegrability of a Class of Perturbed Kepler Problems in Two Dimensions, Phys. Lett. A, 1987, vol. 120, no. 8, pp. 388–390.

    Article  MathSciNet  Google Scholar 

  39. Yoshida, H., A Criterion for the Nonexistence of an Additional Integral in Hamiltonian Systems with a Homogeneous Potential, Phys. D, 1987, vol. 29, nos. 1–2, pp. 128–142.

    Article  MathSciNet  MATH  Google Scholar 

  40. Yoshida, H., A Criterion for the Nonexistence of an Additional Analytic Integral in Hamiltonian Systems with n Degree of Freedom, Phys. Lett. A, 1989, vol. 141, nos. 3–4, pp. 108–112.

    Article  MathSciNet  Google Scholar 

  41. Zhang, X., Analytic Normalization of Analytic Integrable Systems and the Embedding Flows, J. Differential Equations, 2008, vol. 244, no. 5, pp. 1080–1092.

    Article  MathSciNet  MATH  Google Scholar 

  42. Ziglin, S. L., Branching of Solutions and Nonexistence of First Integrals in Hamiltonian Mechanics: 1, Funct. Anal. Appl., 1982, vol. 16, no. 3, pp. 181–189; see also: Funktsional. Anal. i Prilozhen., 1982, vol. 16, no. 3, pp. 30–41.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported by NSFC grant (No. 11771177), China Automobile Industry Innovation and Development Joint Fund (No. U1664257), Program for Changbaishan Scholars of Jilin Province and Program for JLU Science, Technology Innovative Research Team (No. 2017TD-20), NSF grant (No. 20190201132JC) of Jilin Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaiyin Huang, Shaoyun Shi or Wenlei Li.

Additional information

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, K., Shi, S. & Li, W. Kovalevskaya Exponents, Weak Painlevé Property and Integrability for Quasi-homogeneous Differential Systems. Regul. Chaot. Dyn. 25, 295–312 (2020). https://doi.org/10.1134/S1560354720030053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354720030053

Keywords

MSC2010 numbers

Navigation