Skip to main content
Log in

New insights into the evolution and expression dynamics of invertase gene family in Solanum lycopersicum

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Invertases catalyze the irreversible hydrolysis of sucrose into glucose and fructose and thus play key roles in carbon metabolism and plant development. To gain insights into their evolutional and functional relationships, we conducted genome-wide analyses of invertase genes in tomato and other species, focusing on their evolution and expression dynamics. The analyses unexpectedly identified in the tomato genome 5 pseudo invertsase sequences and 5 non-functional cell wall invertases (CWINs) lacking the critical β-fructosidase motif or other amino acids required for hydrolyzing sucrose. Based on their phylogeny relationship and exon–intron structure, we speculated that the invertase gene family could arose from different ancestral genes. The acid invertase gene family, comprised of CWIN and vacuolar invertase (VIN), expanded through segmental and tandem duplication. Analysis of functional divergence suggests site-specific shifted evolutionary rate (Type-I) have played an important role in evolutionary novelties after acid invertase gene duplication in plants. Finally, paralogs within each of the CWIN, VIN and CIN subfamilies exhibited diverse expression responses to the same set of stress treatments including salt and temperature stresses, probably reflecting functional adaptability of the invertase genes during evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

    Article  CAS  PubMed  Google Scholar 

  • Alberto F, Bignon C, Sulzenbacher G, Henrissat B, Czjzek M (2004) The three-dimensional structure of invertase (beta-fructosidase) from Thermotoga maritima reveals a bimodular arrangement and an evolutionary relationship between retaining and inverting glycosidases. J Med Chem 279:18903–18910

    CAS  Google Scholar 

  • Barratt DHP, Derbyshire P, Findlay K, Pike M, Wellner N, Lunn J, Feil R, Simpson C, Maule AJ, Smith M (2009) Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proc Natl Acad Sci USA 106:13124–13129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beauvoit BP, Colombié S, Monier A, Andrieu MH, Biais B, Bénard C, Chéniclet C, Dieuaide-Noubhani M, Nazaret C, Mazat JP, Gibon Y (2014) Model-assisted analysis of sugar metabolism throughout tomato fruit development reveals enzyme and carrier properties in relation to vacuole expansion. Plant cell 26:3224–3242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolger A, Scossa F, Bolger ME, Lanz C, Maumus F, Tohge T, Quesneville H, Alseekh S, Sørensen I, Fich EA, Conte M, Keller H, Schneeberger K, Schwacke R, Ofner I, Vrebalov J, Xu Y, Osorio S, Aflitos SA, Schijlen E, Jiménez-Goméz JM, Ryngajllo M, Kimura S, Kumar R, Koenig D, Headland LR, Maloof JN, Sinha N, van Ham RC, Lankhorst RK, Mao L, Vogel A, Arsova B, Panstruga R, Fei Z, Rose JK, Zamir D, Carrari F, Giovannoni JJ, Weigel D, Usadel B, Fernie AR (2014) The genome of the stress-tolerant wild tomato species Solanum pennellii. Nat Genet 46:1034–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun DM, Wang L, Ruan YL (2014) Understanding and manipulating sucrose phloem loading unloading metabolism and signalling to enhance crop yield and food security. J Exp Bot 65:1713–1735

    Article  CAS  PubMed  Google Scholar 

  • Brosius J, Gould S (1992) On “genomenclature”: a comprehensive (and respectful) taxonomy for pseudogenes and other “junk DNA”. Proc Natl Acad Sci USA 89:10706–10710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen MY, Li K, Li HP, Song CP, Miao YC (2017) The glutathione peroxidase gene family in Gossypium hirsutum: Genome-wide identification classification gene expression and functional analysis. Sci Rep 7:44743

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng WH, Tallercio EW, Chourey PS (1996) The Miniature1 seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. Plant Cell 8:971–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8:131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fridman E, Carrari F, Liu YS, Fernie AR, Zamir D (2004) Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305:1786–1789

    Article  CAS  PubMed  Google Scholar 

  • Fridman E, Zamir D (2003) Functional divergence of a syntenic invertase gene family in tomato potato and Arabidopsis. Plant Physiol 131:603–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo SY, Dai SJ, Singh PK, Wang HY, Wang YN, Tan JLH, Wee WY, Ito T (2018) A membrane-bound NAC-like transcription factor OsNTL5 represses the flowering in Oryza sativa. Front Plant Sci 9:555

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao W, Xu FC, Guo DD, Zhao JR, Liu J, Guo YW, Singh PK, Ma XN, Long L, Botella JR, Song CP (2018) Calcium-dependent protein kinases in cotton: insights into early plant responses to salt stress. BMC Plant Biol 18(1):15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Godt DE, Roitsch T (1997) Regulation and tissue-specific distribution of mRNAs for three extracellular invertase isoenzymes of tomato suggests an important function in establishing and maintaining sink metabolism. Plant Physiol 115:273–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu X (2006) A simple statistical method for estimating type-II (cluster-specific) functional divergence of protein sequences. Mol Biol Evol 23:1937–1945

    Article  CAS  PubMed  Google Scholar 

  • Gu X (1999) Statistical methods for testing functional divergence after gene duplication. Mol Biol Evol 16:1664–1674

    Article  CAS  PubMed  Google Scholar 

  • Gu X, Zou Y, Su Z, Huang W, Zhou Z, Arendsee Z, Zeng X (2013) An update of DIVERGE software for functional divergence analysis of protein family. Mol Biol Evol 30(7):1713–1719

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Guo YW, Guo HL, Li X, Huang LL, Zhang BN, Pang XB, Liu BY, Ma LQ, Wang H (2013) Two type III polyketide synthases from Polygonum cuspidatum: gene structure evolutionary route and metabolites. Plant Biotechnol Rep 7(3):371–381

    Article  Google Scholar 

  • Jin Y, Ni DA, Ruan YL (2009) Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. Plant Cell 21:2072–2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji X, Wim EVD, Laere AV, Cheng SH, Bennett J (2005) Structure evolution and expression of the two invertase gene families of rice. J Mol Evol 60:615–634

    Article  CAS  PubMed  Google Scholar 

  • Lammens W, Le RK, Schroeven L, Van Laere A, Rabijns A, Van den Ende W (2009) Structural insights into glycoside hydrolase family 32 and 68 enzymes: functional implications. J Exp Bot 60:727–740

    Article  CAS  PubMed  Google Scholar 

  • Le Roy K, Vergauwen R, Struyf T, Yuan S, Lammens W, Mátrai J, De Maeyer M, Van den End W (2013) Understanding the role of defective invertases in plants: tobacco Nin88 fails to degrade sucrose. Plant Physiol 161(4):1670–1681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li L, Hou MJ, Cao L, Xia Y, Shen ZG, Hu ZB (2018) Glutathione S-transferases modulate Cu tolerance in Oryza sativa. Environ Exp Bot 155:313–320

    Article  CAS  Google Scholar 

  • Li ZM, Palmer WM, Martin AP, Wang RQ, Rainsford F, Jin Y, Patrick JW, Yang YJ, Ruan YL (2012) High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, yound fruit. J Exp Bot 63(3):1155–1166

    Article  CAS  PubMed  Google Scholar 

  • Liu LY, Li LN, Yao CP, Meng SS, Song CP (2013) Functional analysis of the ABA-responsive protein family in ABA and stress signal transduction in Arabidopsis. Chin Sci Bull 58(31):3721–3730

    Article  CAS  Google Scholar 

  • Liu YH, Offler CE, Ruan YL (2016) Cell wall invertase promotes fruit set under heat stress by suppressing ROS-independent cell death. Plant Physiol 172(1):163–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and 2ΔΔCt method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lin DL, Xia JY, Wan SQ (2010) Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytol 188:187–198

    Article  PubMed  Google Scholar 

  • Lou Y, Gou JY, Xue HW (2007) PIP5K9, an Arabidopsis phosphatidylinositol monophosphate kinase interacts with a cytosolic invertase to negatively regulate sugar mediated root growth. Plant Cell 19:163–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu T, Zhang G, Sun L, Wang J, Hao F (2017) Genome-wide identification of CBL family and expression analysis of CBLs in response to potassium deficiency in cotton. Peer J 5:e3653

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lü D, Wang W, Miao C (2013) ATHK1 acts downstream of hydrogen peroxide to mediate ABA signaling through regulation of calcium channel activity in Arabidopsis guard cells. Chin Sci Bull 58(3):336–343

    Article  CAS  Google Scholar 

  • Ma LY, Zhang H, Sun LR, Jiao YH, Zhang GZ, Miao C, Hao FS (2012) NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress. J Exp Bot 63(1):305–317

    Article  CAS  PubMed  Google Scholar 

  • Mathias NA, Folkard A, Yong W, Christian RJ, Henrik N, Vagn OM, Karen K (2002) Soluble invertase expression is an early target of drought stress during the critical, abortion-sensitive phase of young ovary development in maize. Plant Physiol 130(2):591–604

    Article  CAS  Google Scholar 

  • Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8:1113–1130

    Article  CAS  PubMed  Google Scholar 

  • Murayama S, Handa H (2007) Genes for alkaline/neutral invertase in rice: alkaline/neutral invertases are located in plant mitochondria and also in plastids. Planta 225:1193–1203

    Article  CAS  PubMed  Google Scholar 

  • Nelson BK, Cai X, Nebenführ A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136

    Article  CAS  PubMed  Google Scholar 

  • Paiva EAS, Sampaio RA, Martinez HEP (1998) Composition and quality of tomato fruit cultivated in nutrient solutions containing different calcium concentrations. J Plant Nutr 21(12):2653–2661

    Article  CAS  Google Scholar 

  • Pan LZ, Guo QW, Chai SL, Cheng Y, Ruan MY, Ye QJ, Wang RQ, Yao ZP, Zhou GZ, Li ZM, Deng MH, Jin FM, Liu LC, Wan HJ (2019) Evolutionary conservation and expression patterns of neutral/alkaline invertases in Solanum. Biomolecules 9:763

    Article  CAS  PubMed Central  Google Scholar 

  • Pang YQ, Li JT, Qi BS, Tian M, Sun LR, Wang XC, Hao FS (2017) Aquaporin AtTIP5,1 as an essential target of gibberellins promotes hypocotyl cell elongation in Arabidopsis thaliana under excess boron stress. Func Plant Biol 45(3):305–314

    Article  CAS  Google Scholar 

  • Qian WJ, Xiao B, Wang L, Hao XY, Yue C, Cao HL, Wang YC, Li NN, Yu YB, Zeng JM, Yang YJ, Wang XC (2018) CsINV5, a tea vacuolar invertase gene enhances cold tolerance in transgenic Arabidopsis. BMC Plant Biol 18:228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Ruan YL (2014) Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol 65:33–67

    Article  CAS  PubMed  Google Scholar 

  • Ruan YL, Jin Y, Yang YJ, Li GJ, Boyer JS (2010) Sugar input metabolism and signaling mediated by invertase: roles in development yield potential and response to drought and heat. Mol Plant 3:942–955

    Article  CAS  PubMed  Google Scholar 

  • Saeed AI, Sharo V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M (2003) TM4: a free open source system for microarray data management and analysis. Bio Techniques 34:374–378

    CAS  Google Scholar 

  • Schroeven L, Lammens W, Van LA, Van den Ende W (2008) Transforming wheat vacuolar invertase into a high affinity sucrose: sucrose 1-fructosyltransferase. New Phytol 180:822–831

    Article  CAS  PubMed  Google Scholar 

  • Sturm A, Chrispeels MJ (1990) cDNA cloning of carrot extracellular beta-fructosidase and its expression in response to wounding and bacterial-infection. Plant Cell 2:1107–1119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun LR, Ma LY, He SB, Hao FS (2018) AtrbohD functions downstream of ROP2 and positively regulates waterlogging response in Arabidopsis. Plant Signal Behav 13(9):1–5

    Google Scholar 

  • Sun Q, Wang GH, Zhang X, Zhang XR, Qiao P, Long L, Yuan YL, Cai YF (2017) Genome-wide identification of the TIFY gene family in three cultivated Gossypium species and the expression of JAZ genes. Sci Rep 7:42418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood evolutionary distance and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, Ma H, Zhang G, He Z (2008) Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet 40:1370–1374

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Cook A, Patrick JW, Chen XY, Ruan YL (2014) Silencing vacuolar invertase gene GhVIN1 blocks cotton fiber initiation from ovule epidermis probably by suppressing a cohort of regulatory genes via sugar signaling. Plant J 78:686–696

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Li XR, Lian H, Ni DA, He YK, Chen XY, Ruan YL (2010) Evidence that high activity of vacuolar invertase is required for cotton fiber and Arabidopsis root elongation through osmotic dependent and independent pathways respectively. Plant Physiol 154:744–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang TP, Liu H, Hua HJ, Wang L, Song CP (2011) A vacuole localized beta-glucosidase contributes to drought tolerance in Arabidopsis. Chin Sci Bull 56:3538–3546

    Article  CAS  Google Scholar 

  • Welham T, Pike J, Horst I, Flemetakis E, Katinakis P, Kaneko T, Sato S, Tabata S, Perry J, Parniske M, Wang TL (2009) A cytosolic invertase is required for normal growth and cell development in the model legume Lotus japonicas. J Exp Bot 60(12):3353–3365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang L, Le RK, Bolouri-Moghaddam MR, Vanhaecke M, Lammens W, Rolland F, Van den Ende W (2011) Exploring the neutral invertase–oxidative stress defence connection in Arabidopsis thaliana. J Exp Bot 62:3849–3862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Avigne WT, McCarty DR, Koch KE (1996) A similar dichotomy of sugar modulation and developmental expression affects both paths of sucrose metabolism: evidence from a maize invertase gene family. Plant Cell 8:1209–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu LH, Wang WY, Guo JJ, Qin J, Shi DQ, Li YL, Xu J (2014) Zinc improves salt tolerance by increasing reactive oxygen species scavenging and reducing Na+ accumulation in wheat seedlings. Biol Plant 58(4):751–757

    Article  CAS  Google Scholar 

  • Xu Q, Xing S, Zhu C, Wei LW, Fan Y, Wang Q, Song Z, Wenhui YW, Luo F, Shan F, Kang L, Chen W, Yan J, Li J, Sang T (2015) Population transcriptomics reveals a potentially positive role of expression diversity in adaptation. J Integr Plant Biol 57:284–299

    Article  CAS  PubMed  Google Scholar 

  • Yang SH, Gu TT, Pan CY, Feng ZM, Ding J, Hang YY, Chen JQ, Tian DC (2008) Genetic variation of NBS-LRR class resistance genes in rice lines. Theor Appl Genet 116(2):165–177

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Lu T, Miao W, Sun L, Tian M, Wang J, Hao F (2017) Genome-wide identification of ABA receptor PYL family and expression analysis of PYLs in response to ABA and osmotic stress in Gossypium. Peer J 5:e4126

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang H, Yue MX, Zheng XK, Gautam M, He SB, Li LJ (2018) The role of promoter-associated histone acetylation of haem oxygenase-1 (HO-1) and giberellic acid-stimulated like-1 (GSL-1) genes in heat-induced lateral root primordium inhibition in maize. Front Plant Sci 9:1520

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Chen WX, Bian JY, Xie H, Li Y, Xu CX, Ma J, Guo SY, Chen JY, Cai XF, Wang LX, Wang QH, She YM, Chen SX, Zhou ZQ, Dai SJ (2018) Proteomics and phosphoproteomics of heat stress-responsive mechanisms in spinach. Front Plant Sci 9:800

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Wang YL, Qiao XR, Wang J, Wang LD, Xu CS, Zhang X (2013) Phototropins function in high-intensity blue light-induced hypocotyl phototropism in Arabidopsis by altering cytosolic calcium. Plant Physiol 162(3):1539–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou HR, Xu M, Hou RX, Zheng YP, Chi YG, Ouyang Z (2018) Thermal acclimation of photosynthesis to experimental warming is season dependent for winter wheat (Triticum aestivum L.). Environ Exper Bot 150:249–259

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Yong-Ling Ruan for conceptualizing preliminarily the experiments.

Funding

This research was partially supported by National Key Research and Development Program of China (2017YFD0101902), State Key Laboratory Breeding Base for the Zhejiang Sustainable Pest and Disease Control (2010DS700124-ZZ1903 and 2010DS700124-ZZ1807), National Natural Science Foundation of China (31772294), National Key Research and Development Program (2018YCGC005), Zhejiang Provincial Major Agricultural Science and Technology Projects of New Varieties Breeding (2016C02051), Zhejiang Provincial Natural Science Foundation of China (LY18C150008), General Program from the National key research and development program (2018YFD1000800), The earmarked fund for China Agriculture Research System (CARS-23-G-44).

Author information

Authors and Affiliations

Authors

Contributions

H.W. and S.C. conceived and designed the research. L.R., L.P., Y.C, M.R., Q.Y., performed the experiments. Z.Y., G.Z., R.W., Y.C. and H.W. analyzed the data and wrote the paper. H.W. revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hongjian Wan.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, H., Chai, S., Ru, L. et al. New insights into the evolution and expression dynamics of invertase gene family in Solanum lycopersicum. Plant Growth Regul 92, 205–217 (2020). https://doi.org/10.1007/s10725-020-00631-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-020-00631-2

Keywords

Navigation