Skip to main content
Log in

Nutritional Composition, Bioactive Compounds and Antioxidant Activity of Wild Edible Flowers Consumed in Semiarid Regions of Mexico

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

In semiarid regions of Mexico, it is common to use the floristic richness of wild plants as food ingredients. Hence, flowers of Agave salmiana, Aloe vera, Erythrina americana, and Myrtillocactus geometrizans, which are typical and traditionally consumed flowers, were analyzed. The physicochemical properties; proximate composition; the contents of minerals, carotenoids, ascorbic acid, phenols, and total flavonoids; the quantification of phenolic compounds by HPLC; and the antioxidant activity in vitro were determined. The flowers were high in carbohydrates, proteins and minerals, mainly K and N in flowers from E. americana and M. geometrizans, respectively. The highest concentration of carotenoids was detected in red flowers (E. americana). Total phenols ranged from 4.73 to 72.40 mg of gallic acid equivalents per gram of dry weight (GAE/g DW). However, the highest value of antioxidant activity was 819.80 μmol of Trolox equivalents per gram of dry weight (TE/g DW). The highest values of phenolic compounds content and antioxidant activity were found in the flowers of M. geometrizans. The antioxidant activity of flowers was mainly related to phenolic compounds. The main phenolic compounds detected in flowers were rutin and phloridzin. The edible flowers analyzed in this study are a potential source of compounds with high biological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

QE:

Quercetin equivalents

DPPH:

2,2-diphenyl-1-picrylhydrazyl

TA:

Titrable acidity

DW:

Dry weight

TE:

Trolox equivalents

FRAP:

Ferric reducing antioxidant power

TFA:

Trifluoracetic acid

GAE:

Gallic acid equivalents

TSS:

Total soluble solids

HPLC:

High-performance liquid chromatography

References

  1. Navarro-González I, González-Barrio R, García-Valverde V, Bautista-Ortín AB, Periago MJ (2015) Nutritional composition and antioxidant capacity in edible flowers: characterization of phenolic compounds by HPLC-DAD-ESI/MSn. Int J Mol Sci 16:805–822. https://doi.org/10.3390/ijms16010805

  2. Fernandes L, Casal S, Pereira JA, Saraiva JA, Ramalhosa E (2017) Edible flowers: a review of the nutritional, antioxidant, antimicrobial properties and effects on human health. J Food Compos Anal 60:38–50. https://doi.org/10.1016/j.jfca.2017.03.017

  3. Lara-Cortés E, Martín-Belloso O, Osorio-Díaz P, Barrera-Necha LL, Sánchez-López JA, Bautista-Baños S (2014) Antioxidant capacity, nutritional and functional composition of edible dahlia flowers. Rev Chapingo Ser Hortic 20(1):101–116. https://doi.org/10.5154/r.rchsh.2013.07.024

  4. Chensom S, Okumura H, Mishima T (2019) Primary screening of antioxidant activity, total polyphenol content, carotenoid content, and nutritional composition of 13 edible flowers from Japan. Prev Nutr Food Sci 24(2):171–178. https://doi.org/10.3746/pnf.2019.24.2.171

  5. Loizzo MR, Pugliese A, Bonesi M, Tenuta C, Menichini F, Xiao J (2015) Edible flowers: a rich source of phytochemicals with antioxidant and hypoglycaemic activity. J Agric Food Chem 62(12):2467–2474. https://doi.org/10.1021/acs.jafc.5b03092

  6. Stefaniak A, Grzeszczuk M (2019) Nutritional and biological value of five edible flower species. Not Bot Horti Agrobot Cluj-Napoca 47(1):128–134. https://doi.org/10.15835/nbha47111136

  7. Fernandes L, Ramalhosa E, Pereira JA, Saraiva JA (2018) The unexplored potential of edible flowers lipids. Agriculture 8(146):1–23. https://doi.org/10.3390/agriculture8100146

  8. Nowicka P, Wojdyło A (2019) Anti-hyperglycemic and anticholinergic effects of natural antioxidant contents in edible flowers. Antioxidants 8:308. https://doi.org/10.3390/antiox8080308

  9. Moreno-Calles AI, Toledo VM, Casas A (2013) Los sistemas agroforestales tradicionales de México: una aproximación biocultural. Bot Sci 91(4):375–398

  10. Casas A, Valiente-Banuet A, Viveros JL, Caballero J, Cortés L, Dávila P, Rodríguez I (2001) Plant resources of the Tehuacán-Cuicatlán Valley, México. Econ Bot 55(1):129–166. https://doi.org/10.1007/BF02864551

  11. Sotelo A, López-García S, Basurto-Peña F (2007) Content of nutrient and antinutrient in edible flowers of wild plants in Mexico. Plant Foods Hum Nutr 62:133–138. https://doi.org/10.1007/s11130-007-0053-9

  12. Pérez-Escandón BE, Villacencio-Nieto MA, Ramírez-Aguirre A (2003) Lista de las plantas útiles del estado de Hidalgo, Primera edn. Universidad Autónoma del Estado de Hidalgo, Hidalgo https://books.google.com.mx/books/about/Lista_de_las_plantas_%C3%BAtiles_del_Estado.html?id=m5L3tqHwGn8C&redir_esc=y

  13. Aquino-Bolaños EN, Urrutia-Hernández TA, Castillo-Lozano ML, Chavéz-Servia JL, Verdalet-Guzmán I (2013) Physicochemical parameters and antioxidant compounds in edible squash (Cucurbita pepo) flower stored under controlled atmospheres. J Food Qual 36:302–308. https://doi.org/10.1111/jfq.12053

  14. López-Cervantes J, Sánchez-Machado DI, Cruz-Flores P, Mariscal-Domínguez MF, Mora-López GS, Campas-Baypoli ON (2018) Antioxidant capacity, proximate composition, and lipid constituents of Aloe vera flowers. J Appl Res Med Aromat Plants 10:93–98 https://doi.org/10.1016/j.jarmap.2018.02.004

  15. Bernardino-Nicanor A, Montañéz-Soto JL, Vivar-Vera MD, Juárez-Goiz JM, Acosta-García G, González-Cruz L (2016) Effect of drying on the antioxidant capacity and concentration of phenolic compounds in different parts of the Erythrina americana tree. Bioresources 11:9741–9755. https://doi.org/10.15376/biores.11.4.9741-9755

  16. Rop O, Mlcek J, Jurikova T, Neugebauerova J, Vabkova J (2012) Edible flowers - a new promising source of mineral elements in human nutrition. Molecules 17:6672–6683. https://doi.org/10.3390/molecules17066672

  17. Hassan LG, Bagudo BU, Aliero AA, Umar KJ, Abubakar L, Sani NA (2011) Evaluation of nutrient and anti-nutrient contents of Parkia biglobosa L flower. NJBAS 19(1):76–80. https://doi.org/10.4314/njbas.v19i1.69347

  18. Zheng J, Yu X, Maninder M, Xu B (2018) Total phenolics and antioxidants profiles of commonly consumed edible flowers in China. Int J Food Prop 21(1):1524–1540. https://doi.org/10.1080/10942912.2018.1494195

  19. Polka D, Podsedek A, Koziolkiewicz M (2019) Comparison of chemical composition and antioxidant capacity of fruit, flower and bark of Viburnum opulus fresh weight. Plant Foods Hum Nutr 74:436–442. https://doi.org/10.1007/s11130-019-00759-1

  20. Guan-Lin C, Song-Gen C, Ying-Qing X, Fu C, Ying-Ying Z, Chun-Xia L (2015) Total phenolic, flavonoid and antioxidant activity of 23 edible flowers subjected to in vitro digestion. J Funct Foods 17:243–259 https://doi.org/10.1016/j.jff.2015.05.028

  21. Saini RK, Nile SH, Park SW (2015) Carotenoids from fruits and vegetables: chemistry, analysis, occurrence, bioavailability and biological activities. Food Res Int 76:735–750. https://doi.org/10.1016/j.foodres.2015.07.047

  22. Santiago-Saenz YO, Hernández-Fuentes AD, López-Palestina CU, Garrido-Cauich JH, Alatorre-Cruz JM, Monroy-Torres R (2019) Nutritional importance and biological activity of bioactive compounds from quelites consumed in Mexico. Rev Chil Nutr 46(5):593–605. https://doi.org/10.4067/S0717-75182019000500593

  23. Gupta M, Wali A, Anjali GS, Annepu SK (2018) Nutraceutical potential of guava. In: Mérillon JM, Ramawat K (eds) Bioactive molecules in food. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-54528-8_85-1

  24. López-Palestina C, Aguirre-Mancilla C, Raya-Pérez J, Ramírez-Pimentel J, Gutiérrez-Tlahque J, Hernández-Fuentes AD (2018) The effect of an edible coating with tomato oily extract on the physicochemical and antioxidant properties of Garambullo (Myrtillocactus geometrizans) fruits. Agronomy 8(11):248. https://doi.org/10.3390/agronomy8110248

  25. Liu C, Yuan C, Ramaswamy HS, Ren Y, Ren X (2019) Antioxidant capacity and hepatoprotective activity of myristic acid acylated derivative of phloridzin. Heliyon 5:e01761. https://doi.org/10.1016/j.heliyon.2019.e01761

  26. Moliner C, Barros L, Mines D, López V, Langa E, ICFR F (2018) Edible flowers of Tagetes erecta L. as functional ingredients: phenolic composition, antioxidant and protective effects on Caenorhabditis elegans. Nutrients 10(12):1–14. https://doi.org/10.3390/nu10122002

  27. Mlcek J, Rop O (2011) Fresh edible flowers of ornamental plants–a new source of nutraceutical foods. Trends Food Sci Technol 22(10):561–569. https://doi.org/10.1016/j.tifs.2011.04.006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Uriel López-Palestina.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2598 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinedo-Espinoza, J.M., Gutiérrez-Tlahque, J., Santiago-Saenz, Y.O. et al. Nutritional Composition, Bioactive Compounds and Antioxidant Activity of Wild Edible Flowers Consumed in Semiarid Regions of Mexico. Plant Foods Hum Nutr 75, 413–419 (2020). https://doi.org/10.1007/s11130-020-00822-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-020-00822-2

Keywords

Navigation