Skip to main content
Log in

Fenites of the Miaskite–Carbonatite Complex in the Vishnevye Mountains, Southern Urals, Russia: Origin of the Metasomatic Zoning and Thermodynamic Simulations of the Processes

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Mineral zoning in fenites around miaskite intrusions of the Vishnevye Mountains complex can be interpreted as a magmatic-replacement zonal metasomatic aureole (in D.S. Korzhinskii’s understanding): the metasomatic transformations of the fenitized gneisses under the effect of deep alkaline fluid eventually resulted in the derivation of nepheline syenite eutectic melt. Based on the PTfO2 parameters calculated from the composition of minerals coexisting in the successive zones, isobaric–isothermal fO2aSiO2 and µNa2O–µAl2O3 sections were constructed with the Perplex program package to model how the fenites interacted with H2O–CO2 fluid (in the Na–K–Al–Si–Ca–Ti–Fe–Mg–O–H–C system). The results indicate that the fluid–rock interaction mechanisms are different in the outer (fenite) and inner (migmatite) parts of the zonal aureole. Its outer portion was dominated by desilication of rocks, which led, first, to quartz disappearance from these rocks and then to an increase in the Al# of the coexisting minerals (biotite and clinopyroxene). In the inner part of the aureole, fenite transformations into biotite–feldspathic metasomatic rocks and nepheline migmatite were triggered by an increase in the Na and Al activities in the system alkaline H2O–CO2 fluid–rock. As a consequence, the metasomatites were progressively enriched in Al2O3 and alkalis, and these transformations led to the development of biotite in equilibrium with K–Na feldspar and calcite at the sacrifice of pyroxene. The further introduction of alkalis led to the melting of the biotite–feldspathic metasomatites and the origin of nepheline migmatites. The simulated model sequence of metasomatic zones that developed when the gneiss was fenitized and geochemical features of the successive zones (differences in the LILE and REE concentrations in the rocks and minerals of the fenitization aureole and the Sm–Nd isotope systematics of the rocks of the alkaline complex) indicate that the source of the fluid responsible for the origin of zonal fenite–miaskite complexes may have been carbonatite, a derivative of mantle magmas, whereas the miaskites were produced by metasomatic transformations of gneisses and subsequent melting under the effect of fluid derived from carbonatite magmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

Notes

  1. Chemical compositions of minerals in the fenite aureole at the Potaniny Mountains and the composition of the potassic feldspar are presented in Table ESM_1.xls (Suppl. 1) to the Russian and English versions of the paper, which is available for authorized users at https://elibrary.ru/ and http://link.springer.com/, respectively.

REFERENCES

  1. Abramov, S.S., Thermodynamic modeling of biotite stability in assemblage with feldspar, quartz, fayalite, pyrrhotite, and ilmenite in a C–O–H–S–F fluid at 427–1027°C and 2 kbar, Geochem. Int., 2000, vol. 38, no. 5, pp. 464–479.

    Google Scholar 

  2. Abramov, S.S., Formation of fluorine–rich magmas by fluid filtration through silicic magmas: petrological and geochemical evidence of metamagmatism, Petrology, 2004, vol. 12, no. 1, pp. 17–36.

    Google Scholar 

  3. Abramov, S.S. and Kurdyukov, E.B., The origin of charnockite–enderbite complexes by magmatic replacement: geochemical evidence, Geochem. Int., 1997, vol. 35, no. 3, pp. 219–226.

    Google Scholar 

  4. Abramov, S.S., Rusinov, V.L., and Kovalenker, V.A., Petrological model of the formation of porphyraceous granitoid complex, Middle Tien Shan, Petrologiya, 1994, vol. 2, no. 4, pp. 411–440.

    Google Scholar 

  5. Arzamastsev, A.A., Arzamastseva, L.V., and Zaraiskii, G.P., Contact interaction of agpaitic magmas with basement gneisses: an example of the Khibina and Lovozero massifs, Petrology, 2011, vol. 19, no. 2, pp. 109–133.

    Article  Google Scholar 

  6. Bagdasarov, Yu.A., On main petro- and geochemical features of linear-type carbonatites and their formation, Geochem. Int., 1990, no. 8, pp. 1108–1119.

  7. Balashov, V.N. and Likhtner, P.Ch., Disappearing zones in the infiltration–metasomatic zoning, Dokl. Akad. Nauk SSSR, 1991, vol. 321, no. 6, pp. 1242–1246.

    Google Scholar 

  8. Baneva, N.N. and Rusin, A.I., Structural–compositional evolution and isotope age of the Il’meny–Vishnevogorsk Complex, South Urals, Litosfera, 2014, no. 2, pp. 131–137.

  9. Bau, M., Controls on fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/ho, Zr/Hf and lanthanide tetrad effect, Contrib. Mineral. Petrol., 1996, vol. 123, pp. 323–333.

    Article  Google Scholar 

  10. Bazhenov, A.G., Ivanov, B.N., and Kutepova, L.A., O granat– i korundsoderzhashchikh sienitakh Il’menskikh gor. Shchelochnye porody i granitoidy Yuzhnogo Urala (On garnet and Corundum-bearing Syenites of the Ilmeny Gory. Alkaline Rocks and Granitoids of the South Urals) Sverdlovsk: UNTs AN SSR, 1979, pp. 31–42.

  11. Bazhenov, A.G., Bazhenova, L.F., Krinova, T.V., and Khvorov, P.V., Potassic-ferrisadanagaite (K,Na)Ca2(Fe2+, Mg)3(Fe3+, Al)2 [Si5Al3](OH)2 – a new amphibole-group mineral species (Il’meny Gory, South Urals), Zap. Ross. Mineral. O-va, 1999, no. 4, pp. 50–55.

  12. Blundy, J.D. and Annen, C.J., Crustal magmatic systems from the perspective of heat transfer, Enigmatic Relationship between Silicic Volcanic and Plutonic Rocks.Elements, 2016, vol. 12, no. 2, pp. 115–120.

    Article  Google Scholar 

  13. Brooker, R.A. and Kjarsgaard, B.A., Silicate–carbonate liquid immiscibility and phase relations in the system SiO2–Na2O–Al2O3–CaO–CO2 at 0.1–2.5 GPa with applications to carbonatite genesis, J. Petrol., 2011, vol. 52, pp. 1281–1305.

    Article  Google Scholar 

  14. Buhn, B. and Rankin, A.H., Composition of natural, volatile-rich Na–Ca–REE–Sr carbonatitic fluids trapped in fluid inclusions, Geochim. Cosmochim. Acta, 1999, vol. 63, no. 22, pp. 3781–3797.

    Article  Google Scholar 

  15. Bychkova, Ya.V., Sinitsyn, M.Yu., Petrenko, D.B., et al., Method peculiarities of multielemental analysis of rocks with inductively-coupled plasma mass spectrometry, Moscow Univ. Geol. Bull., 2017, vol. 72, no. 1, pp. 56–62.

    Article  Google Scholar 

  16. Cawthorn, R.G. and Collerson, K.D., The recalculation of pyroxene end-member parameters and the estimation of ferrous and ferric iron content from electron microprobe analyses, Am. Mineral., 1974, vol. 59, pp. 1203–1208.

    Google Scholar 

  17. Connolly, J.A.D., Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation, Earth Planet. Sci. Lett., 2005, vol. 236, pp. 524–541.

    Article  Google Scholar 

  18. Czamanske, G.K. and Wones, D.R., Oxidation during magmatic differentiation, Finnmarka complex, Oslo area, Norway: Part 2, J. Petrol., 1973, vol. 14.

  19. de Moor, J.M., Magmatic volatiles at rifts and arcs: sources and fractionation effects, Earth Planet. Sci., 2013. http://digitalrepository.unm.edu/eps_etds/16

  20. DePaolo, D.J., Perry, F.V., and Baldridge, W.S., Crustal versus mantle sources of granitic magmas: a two-parameter model based on Nd isotopic studies, Trans. R. Soc. Edinb: Earth Sci., 1992, vol. 83, pp. 439–446.

    Google Scholar 

  21. Edgar, A.D., Barium-rich phlogopite and biotite from some quaternary alkali mafic lavas, west eifel, germany, Eur. J. Mineral., 1992, vol. 4, pp. 321–330.

    Article  Google Scholar 

  22. Elliott, H.A.L., Wall, F., Chakhmouradian, A.R., et al., Fenites associated with carbonatite complexes: a review, Ore Geol. Rev., 2018, pp. 38–59.

    Article  Google Scholar 

  23. Es’kova, E.M., Shchelochnye metasomatity Urala (Alkaline Metasomatites of the Urals), M.: Nauka, 1976.

    Google Scholar 

  24. Ginzburg, A.I. and Samoilov, V.S., On the problem of carbonatites, Zap. Vsesoyuz. Mineral.O-va, 1983, vol. 112, no. 2, pp. 164–176.

    Google Scholar 

  25. Goncalves, P., Oliot, E., Marquer, D., and Connolly, J.A.D., Role of chemical processes on shear zone formation: an example from the Grimsel metagranodiorite (Aar massif, Central Alps), J. Metamorph. Geol., 2012, vol. 30, no. 7, pp. 703–722. https://doi.org/10.1111/j.1525-1314.2012.00991.x

    Article  Google Scholar 

  26. Harris, C., Marsh, J.S., and Milner, S.C., Petrology of the alkaline core of the Messum igneous complex, Namibia: evidence for the progressively decreasing effect of crustal contamination, J. Petrol., 1999, vol. 40, no. 9, pp. 1377–1397.

    Article  Google Scholar 

  27. Hawthorne, F.C., Oberti, R., Harlow, G.E., et al., IMA report, nomenclature of the amphibole supergroup, Am. Mineral., 2012, vol. 97, pp. 2031–2048.

    Article  Google Scholar 

  28. Henry, D.J., Guidotti, C.V., and Thomson, J.A., The Ti–saturation surface for low–to–medium pressure metapelitic biotites: implications for geothermometry and Ti–substitution mechanisms, Am. Mineral., 2005, vol. 90, pp. 316–328.

    Article  Google Scholar 

  29. Hetzel, R. and Glodny, J., A crustal–scale, orogen–parallel strike–slip fault in the middle urals: age, magnitude of displacement, and geodynamic significance, Int. J. Earth Sci.(Geol. Rundsch), 2002, vol. 91, pp. 231–245.

    Google Scholar 

  30. Holland, T.J.B. and Powell, R., A compensated–Redlich–Kwong (CORK) equation for volumes and fugacities of CO2 and H2O in the range 1 bar to 50 kbar and 100–1600°C, Contrib. Mineral. Petrol., 1991, vol. 109, pp. 265–273.

    Article  Google Scholar 

  31. Holland, T.J.B. and Powell, R., An internally consistent thermodynamic data set for phases of petrological interest, J. Metamorph. Geol., 1998, vol. 16, pp. 309–343.

    Article  Google Scholar 

  32. Icenhower, J. and London, D., Experimental partitioning of Rb, Cs, Sr, and Ba between alkali feldspar and peraluminous melt, Am. Mineral., 1996, vol. 81, pp. 719–734.

    Article  Google Scholar 

  33. Kjarsgaard, B.A., Phase relations of a carbonated high-CaO nephelinite at 0.2 and 0.5 GPa, J. Petrol., 1998, vol. 39, pp. 2061–2075.

    Article  Google Scholar 

  34. Kogarko, L.N., Kononova, V.A., Orlova, M.P., and Woolley, A.R., Alkaline Rocks and Carbonatites of the World. Part Two: Former USSR, London: etc.: Chapman & Hall, 1995.

  35. Kononova, V.A., Kramm, U., and Grauert, B., Age and source of miaskites of the Il’meny–Vishnevy Gory Complex at the Urals: Rb–Sr data, Dokl. Akad. Nauk SSSR, 1983, vol. 273, no. 5, pp. 1226–1230.

    Google Scholar 

  36. Korzhinskii, D.S., Granitization as magmatic replacement, Izv. Akad. Nauk SSSR, Ser. Geol., 1952, no. 2, pp. 56–69.

  37. Kozlov, E.N. and Arzamastsev, A.A., Petrogenesis of metasomatic rocks in the fenitized zones of the Ozernaya Varaka alkaline ultrabasic complex, Kola Peninsula, Petrology, 2015, vol. 23, no. 1, pp. 45–67.

    Article  Google Scholar 

  38. Lee, W–J. and Wyllie, P.J., Petrogenesis of carbonatite magmas from mantle to crust, constrained by the system CaO–(MgO + FeO*)–(Na2O + K2O)–(SiO2 + Al2O3 + TiO2)–CO2, J. Petrol., 1998, vol. 39, pp. 495–517.

    Article  Google Scholar 

  39. Levin, V.Ya. and Ronenson, B.M., On the origin of miaskitic nepheline syenites, Izv. Akad. Nauk SSSR, Ser. Geol., 1980, no. 11, pp. 19–31.

  40. Metasomatizm i metasomaticheskie porody (Metasomatism and Metasomatic Rocks) Zharikov, V.A. and Rusinov, V.L., Ed., Moscow: Nauchnyi Mir, 1998.

    Google Scholar 

  41. Miller, D.P., Marchall, H.R., and Schumacher, J.C., Metasomatic formation and petrology of blueschist–facies hybrid rocks from Syros (Greece): implications for reactions at the slab–mantle interface, Lithos, 2009, vol. 107, pp. 53–67.

    Article  Google Scholar 

  42. Millhollen, G.L., Melting of nepheline syenite with H2O and H2O + CO2, and the effect of dilution of the aqueous phase on the beginning melting, Am. J. Sci., 1971, vol. 270, pp. 244–254.

    Article  Google Scholar 

  43. Molina, J.F., Moreno, J.A., Castro, A., et al., Calcic amphibole thermobarometry in metamorphic and igneous rocks: new calibrations based on plagioclase/amphibole Al–Si partitioning and amphibole/liquid Mg partitioning, Lithos, 2015, vol. 232, pp. 286–305.

    Article  Google Scholar 

  44. Morimoto, N., Fabries, J., Ferguson, A.K., et al., Nomenclature of pyroxenes. Subcommittee on pyroxenes, Am. Mineral., 1989, vol. 73, pp. 1123–1133.

    Google Scholar 

  45. Morogan, V., Ijolite versus carbonatite as sources of fenitization, Terra Nova, 1994, vol. 6, no. 2, pp. 166–176.

    Article  Google Scholar 

  46. Munoz, J.L., F–OH and Cl–OH exchange in micas with applications to hydrothermal ore deposits, Rev. Mineral., 1984, vol. 13, pp. 469–493.

    Google Scholar 

  47. Munoz, J.L. and Luddington, S.D., Fluoride–hydroxyl exchange in biotite, Am. J. Sci., 1974, vol. 274, no. 4, pp. 396–413.

    Article  Google Scholar 

  48. Nadeau, O., Stevenson, R., and Jebrak, M., Evolution of Montviel alkaline–carbonatite complex by coupled fractional crystallization, fluid mixing and metasomatism. Part I: petrography and geochemistry of metasomatic aegirine–augite and biotite: implications for REE–Nb mineralization, Ore Geol. Rev., 2016, vol. 72, pp. 1143–1162.

    Article  Google Scholar 

  49. Nedosekova, I.L., Belousova, E.A., Sharygin, V.V., et al., Origin and evolution of the Ilmeny–Vishnevogorsky carbonatites (Urals, Russia): insights from trace–element compositions, and Rb–Sr, Sm–Nd, U–Pb, Lu–Hf isotope data, Mineral. Petrol., 2013, vol. 107, pp. 101–123.

    Article  Google Scholar 

  50. Nedosekova, I.L., Vladykin, N.V., Pribavkin, S.V., and Bayanova, T.B., The Il’mensky–Vishnevogorsky miaskite–carbonatite complex, the Urals, Russia: origin, ore resource potential, and sources, Geol. Ore Deposits, 2009, vol. 51, no. 2, pp. 139–161.

    Article  Google Scholar 

  51. Nekvasil, H., Ternary feldspar crystallization in high–temperature felsic magmas, Am. Mineral., 1992, vol. 77, pp. 592–604.

    Google Scholar 

  52. Preston, R.F., Stevens, G., and McCarthy, T.S., Fluid compositions in equilibrium with silica–undersaturated magmas in the system Na2O–Al2O3–SiO2–H2O: clues to the composition of fenitizing fluids, Contrib. Mineral. Petrol., 2003, vol. 144, pp. 559–569.

    Article  Google Scholar 

  53. Puustinen, K., Geology of the Siilinjarvi carbonatitic complex of eastern Finland, Bull. Com. Geol. Finl., 1971, vol. 245, p. 43.

    Google Scholar 

  54. Rass, I. and Girnis, A., Missing Eu in carbonatite and related magmas: evidence for fluid–melt interaction?, Proceedings of 4thEurocarb Workshop, Canary Islands, Spain,2003 (Canary Island, 2003), pp. 14–15.

  55. Rass, I.T., Abramov, S.S., Utenkov, V.A., et al., Role of fluid in the genesis of carbonatites and alkaline rocks: geochemical evidence, Geochem. Int., 2006, vol. 44, no. 7, pp. 636–655.

    Article  Google Scholar 

  56. Riishuus, M.S., Peate, D.W., Tegner, C., et al., Petrogenesis of cogenetic silica-oversaturated and -undersaturated syenites by periodic recharge in a crustally contaminated magma chamber: the Kangerlussuaq intrusion, East Greenland, J. Petrol., 2008, vol. 49, no. 3, pp. 493–522.

    Article  Google Scholar 

  57. Robins, B. and Tusseland, M., The geology, geochemistry and origin of ultrabasic fenites associated with the Pollen Carbonatite (Finn–Mark, Norway), Chem. Geol., 1983, vol. 40, nos. 1/2, pp. 65–95.

    Article  Google Scholar 

  58. Ronenson, B.M., Proiskhozhdenie miaskitov i ikh svyaz' s redkometal’nym orudeneniem (Origin of Miaskites and their Relation with Rare-Metal Mineralization), Moscow: Nedra, 1966.

  59. Rubie, C.D. and Gunter, W., The role of speciation in alkaline igneous fluids during fenite metasomatism, Contrib. Mineral. Petrol., 1983, vol. 82, pp. 165–175.

    Article  Google Scholar 

  60. Safonov, O.G., Kosova, S.A., and Reenen, D.D., Interaction of biotite–amphibole gneiss with H2O–CO2–(K, Na)Cl fluids at 550 MPa and 750 and 800°C: experimental study and applications to dehydration and partial melting in the middle crust, J. Petrol., 2014, vol. 55, no. 12, pp. 2419–2456.

    Article  Google Scholar 

  61. Samoilov, V.S., Geokhimiya karbonatitov (Geochemistry of Carbonatites), Moscow: Nauka, 1984.

  62. Samoilov, V.S. and Ronenson, B.M., Geochemical features of alkaline palyngenesis, Geokhimiya, 1987, no. 11, pp. 1537–1544.

  63. Schmidt, M.W., Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al–in–hornblende barometer, Contrib. Mineral. Petrol., 1992, vol. 110, pp. 304–310.

    Article  Google Scholar 

  64. Secher, K. and Larsen, L.M., Geology and mineralogy of the Sarfartoq carbonatite complex, SW Greenland, Lithos, 1980, vol. 13, no. 2, pp. 199–212.

    Article  Google Scholar 

  65. Shaw, C.S.J. and Penczak, R.S., Barium- and titanium-rich biotite and phlogopite from the western and eastern gabbro, Coldwell alkaline complex, Northwest Ontario, Can. Mineral., 1996, vol. 34, pp. 967–975.

    Google Scholar 

  66. Shchelochno–karbonatitovye kompleksy Urala (Alkaline-Carbonatite Complexes of the Urals), Levin, V.Ya., Ronenson, B.M., Samkov, V.S., Levina, I.A., Sergeev, N.S., and Kiselev, A.P., Eds., (Uralgeolkom, Yekaterinburg, 1997).

    Google Scholar 

  67. Sindern, S. and Kramm, U., Volume characteristics and element transfer of fenite aureoles: a case study from the Iivaara alkaline complex, Finland, Lithos, 2000, pp. 75–93.

  68. Sobachenko V.N., Gundobin A.G., Sandimirova G.P., et al., Strontium isotopes in the rocks of fault-related alkaline carbonate–silicate metasomatites and related crbonatites, Geologiya i geofizika, 1994, vol. 35, no. 3, pp. 60–69.

  69. Sokolova, E., Hawthorne, F.C., Kabalov, Yu., et al., The crystal chemistry of potassic–ferrisadanagaite, Can. Mineral., 2000, vol. 38, pp. 669–674.

    Article  Google Scholar 

  70. Song, W., Xu, V., Veksler, I.V., and Kynicky, J., Experimental study of REE, Ba, Sr, Mo, and W partitioning between carbonatitic melt and aqueous fluid with implications for rare metal mineralization, Contrib. Mineral. Petrol., 2016, vol. 171.https://doi.org/10.1007/s00410-015-1217-5

  71. Spera, F.J. and Bohrson, W.A., Energy-constrained open-system magmatic processes I: General model and energy–constrained assimilation and fractional crystallization (EC–AFC) formulation, J. Petrol., 2001, vol. 42, pp. 999–1018.

    Article  Google Scholar 

  72. Thomas, R., Webster, J.D., Rhede, D., et al., The transition from peraluminous to peralkaline granitic melts: evidence from melt inclusions and accessory minerals, Lithos, 2006, vol. 91, pp. 137–149.

    Article  Google Scholar 

  73. Veksler, I.V. and Keppler, H., Partitioning of Mg, Ca and Na between carbonatite melt and hydrous fluid at 0.1–0.2 GPa, Contrib. Mineral. Petrol., 2000, vol. 138, pp. 27–34.

    Article  Google Scholar 

  74. Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.

    Article  Google Scholar 

  75. Wones, D.R. and Eugster, H.P., Stability of biotite: experiment, theory and application, Am. Mineral., 1965, vol. 50, pp. 1228–1271.

    Google Scholar 

  76. Wu, Ch.M. and Chen, H.X., Revised Ti-in-biotite geothermometer for ilmenite or rutile-bearing crustal metapelites, Sci. Bull., 2015, vol. 60, pp. 116–121.

    Article  Google Scholar 

  77. Xie, Y., Hou, Ze., Yin, Sh., et al., Continuous carbonatitic melt–fluid evolution of a REE mineralization system: evidence from inclusions in the Maoniuping REE deposit, western Sichuan, China, Ore Geol. Rev., 2009, vol. 36, pp. 90–105.

    Article  Google Scholar 

  78. Yavuz, F., Gültekin, A., Orgun, Y., et al., Mineral chemistry of barium- and titanium-bearing biotites in calc–alkaline volcanic rocks from the Mezitler area (Balikesir–Dursunbey), western Turkey, Geochem. J., 2002, vol. 36, pp. 563–580.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank V.L. Rusinov, who initiated our studies of fluid–magma interaction. A.V. Girnis and E.B. Kurdyukov are thanked for theoretical considerations of the reasons why Eu anomalies appear in the REE patterns of the rocks in the absence of plagioclase. We highly appreciate help provided by V.A. Utenkov in sampling the rocks.

Funding

This study was carried out under government-financed project 0136-2018-0029 “Metamorphism and Metasomatism in the Lower Crust” for the Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of Sciences, and project 0136-2016-0002 “Intraplate and Continental Marginal Magmatism as a Petrological Indicator of Geotectonic Environments: An Example of the East European Platform and Its Folded Surroundings”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. T. Rass.

Additional information

Translated by E. Kurdyukov

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramov, S.S., Rass, I.T. & Kononkova, N.N. Fenites of the Miaskite–Carbonatite Complex in the Vishnevye Mountains, Southern Urals, Russia: Origin of the Metasomatic Zoning and Thermodynamic Simulations of the Processes. Petrology 28, 263–286 (2020). https://doi.org/10.1134/S0869591120030029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591120030029

Keywords:

Navigation