Skip to main content
Log in

SSTRNG: self starved feedback SRAM based true random number generator using quantum cellular automata

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The information are need to modulate using irreproducible and unpredictable digital bit stream to get a secure digital communication systems. Hence, True random number generator (TRNG) is a significant aspirant in digital circuit to yield unpredictable digital bit stream. In this assignment self starved feedback SRAM based TRNG is proposed in quantum cellular automata (QCA) technology. Moreover, QCA technology is adopted to design TRNG components due to its features like ultra low power dissipation, low area and ultra high operating frequency. The proposed TRNG is comprised of self starved feedback circuit and floating clock generator. Again, the basis of self starved feedback circuit is a single bit QCA SRAM cell, which extracts the random digital bit. Furthermore, to enhance the randomness, floating clock generator is implemented across self starved feedback circuits input. The functionality of proposed TRNG is accomplished through QCA Designer tool and its architecture is also passed NIST statistical test of randomness. Hence proposed 8 bit TRNG can be interpreted as a novel contender for security applications due to its 14.82 GHz operating frequency, 0.36 μm2 area, latency of 1 QCA clock cycle, 28.53 meV average power dissipation and high tail probability of NIST test battery report in QCA technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abutaleb MM (2018) A novel true random number generator based on QCA nanocomputing. Nano Commun Netw 17:14–20

    Article  Google Scholar 

  • Amaki T, Hashimoto M, Onoye T (2014) A process and temperature tolerant oscillator-based true random number generator. IEICE Trans Fundam Electron Commun Comput 97(12):2393–2399

    Article  Google Scholar 

  • Bayon P, Bossuet L, Aubert A, Fischer V, Poucheret F, Robisson B, Maurine P (2012) Contactless electromagnetic active attack on ring oscillator based true random number generator. COSADE 7275:151–166

    Google Scholar 

  • Bucci M, Luzzi R (2008) Fully digital random bit generators for cryptographic applications. IEEE Trans Circuits Syst I Regul Pap 55(3):861–875

    Article  MathSciNet  Google Scholar 

  • Bucci M, Germani L, Luzzi R, Trifiletti A, Varanonuovo M (2003) A high-speed oscillator-based truly random number source for cryptographic applications on a smart card IC. IEEE Trans Comput 52:403–409

    Article  Google Scholar 

  • Das JC, De D (2016a) User authentication based on quantum-dot cellular automata using reversible logic for secure nanocommunication. Arab J Sci Eng 41(3):773–784

    Article  MathSciNet  MATH  Google Scholar 

  • Das JC, De D (2016b) Quantum-dot cellular automata based reversible low power parity generator and parity checker design for nanocommunication. Front Inf Technol Electron Eng 17(3):224–236

    Article  Google Scholar 

  • Das JC, De D (2016c) Novel low power reversible encoder design using quantum-dot cellular automata. J Nanoelectron Optoelectron 11(4):450–458

    Article  Google Scholar 

  • Das JC, De D (2017a) Nanocommunication network design using QCA reversible crossbar switch. Nano Commun Netw 13:20–33

    Article  Google Scholar 

  • Das JC, De D (2017b) Operational efficiency of novel SISO shift register under thermal randomness in quantum-dot cellular automata design. Microsyst Technol 23(9):4155–4168

    Article  Google Scholar 

  • Das JC, De D (2017c) Reversible binary subtractor design using quantum dot-cellular automata. Front Inf Technol Electron Eng 18(9):1416–1429

    Article  Google Scholar 

  • Das JC, De D (2018a) QCA based design of Polar encoder circuit for nano communication network. Nano Commun Netw 18:82–92

    Article  Google Scholar 

  • Das JC, De D (2018b) Computational fidelity in reversible quantum-dot cellular automata channel routing under thermal randomness. Nano Commun Netw 18:17–26

    Article  Google Scholar 

  • Das JC, De D (2018c) Design of single layer banyan network using quantum-dot cellular automata for nanocommunication. Optik 172:892–907

    Article  Google Scholar 

  • Das JC, De D (2018d) QCA based secure nanocommunication block cipher design based on electronic code book. Malays J Comput Sci 31(2):130–142

    Article  Google Scholar 

  • Das et al (2017) Reversible gate-based cipher text using QCA for nanocommunication. Nanomater Energy 6(1):7–16

    Article  Google Scholar 

  • Das et al (2019) QCA based error detection circuit for nano communication network. IEEE Access 7:67355–67366

    Article  Google Scholar 

  • Debnath et al (2016) Correlation and convolution for binary image filter using QCA. Nanomater Energy 5(1):61–70

    Article  MathSciNet  Google Scholar 

  • Debnath B, Das JC, De D (2017a) Reversible logic-based image steganography using quantum dot cellular automata for secure nanocommunication. IET Circuits Devices Syst 11(1):58–67

    Article  Google Scholar 

  • Debnath B, Das JC, De D (2017b) Fingerprint authentication using QCA technology. In: 2017 devices for integrated circuit (DevIC). IEEE, pp 125–130

  • Debnath B, Das JC, De D (2018) Design of image steganographic architecture using quantum-dot cellular automata for secure nanocommunication networks. Nano Commun Netw 15:41–58

    Article  Google Scholar 

  • Frost SE, Dysart TJ, Kogge PM, Lent CS (2004) Carbon nanotubes for quantum-dot cellular automata clocking. In: 4th IEEE Conference on Nanotechnology. IEEE, Munich, Germany, pp 171–173

    Google Scholar 

  • Gaviria Rojas W, McMorrow J, Geier M, Tang Q, Kim C, Marks T, Hersam M (2017) Solution-processed carbon nanotube true random number generator. Nano Lett 17(8):4976–4981

    Article  Google Scholar 

  • Hedayatpour S, Chuprat S (2011) Random number generator based on transformed image data source. Adv Comput Commun Control Autom 121:457–464

    Article  Google Scholar 

  • Holcomb D, Burleson W, Fu K (2009) Power-up SRAM state as an identifying fingerprint and source of true random numbers. IEEE Trans Comput 58(9):1198–1210

    Article  MathSciNet  MATH  Google Scholar 

  • Holman W, Connelly J, Dowlatabadi A (1997) An integrated analog/digital random noise source. IEEE Trans Circuits Syst I Fundam Theory Appl 44:521–528

    Article  Google Scholar 

  • Keikha A, Dadkhah C, Tehrani M, Navi K (2011) A novel design of a random generator circuit in QCA. Int J Comput Appl 35(1):30–36

    Google Scholar 

  • Kim K, Wu K, Karri R (2007) The robust QCA adder designs using composable QCA building blocks. IEEE Trans Comput Aided Des Integr Circuits Syst 26(1):176–183

    Article  Google Scholar 

  • Lent C, Tougaw P, Porod W, Bernstein G (1993) Quantum cellular automata. Nanotechnology 4(1):49–57

    Article  Google Scholar 

  • Lim D, Lee J, Gassend B, Suh G, van Dijk M, Devadas S (2005) Extracting secret keys from integrated circuits. IEEE Trans Very Large Scale Integr Syst 13(10):1200–1205

    Article  Google Scholar 

  • Mathew S, Srinivasan S, Anders M, Kaul H, Hsu S, Sheikh F, Krishnamurthy R (2012) 2.4 Gbps, 7 mW all-digital PVT-variation tolerant true random number generator for 45 nm CMOS high-performance microprocessors. IEEE J Solid State Circuits 47(11):2807–2821

    Article  Google Scholar 

  • National Institute of Standards and Technology (NIST) (2010) A statistical test suite for random and pseudorandom number generators for cryptographic applications, Special Publication 800-22

  • Purkayastha et al (2016a) Quantum-dot cellular automata based autonomous system for future nano-communication device. Quantum Matter 5(6):725–731

    Article  Google Scholar 

  • Purkayastha T, De D, Das K (2016b) A novel pseudo random number generator based cryptographic architecture using quantum-dot cellular automata. Microprocess Microsyst 45:32–44

    Article  Google Scholar 

  • Qadri SUR, Bangi ZA, Tariq Banday M, Mohiuddin Bhat G (2019) Design and implementation of cryptographic element with low power dissipation in QCA. Nanomater Energy 8(1):1–11

    Article  Google Scholar 

  • Qu Y, Han J, Cockburn B, Pedrycz W, Zhang Y, Zhao W (2017) A true random number generator based on parallel STT-MTJs. In: Proceedings of the design, automation and test in Europe conference and exhibition (DATE), pp 606–609

  • Rührmair U, Jaeger C, Bator M, Stutzmann M, Lugli P, Csaba G (2011) Applications of high-capacity crossbar memories in cryptography. IEEE Trans Nanotechnol 10(3):489–498

    Article  Google Scholar 

  • Schellekens D, Preneel B, Verbauwhede I (2006) FPGA vendor agnostic true random number generator. In: International conference on field programmable logic and applications (FPL 2006), pp 1–6

  • Srivastava S, Asthana A, Bhanja S, Sarkar S (2011), QCAPro-an error power estimation tool for QCA circuit design. In: IEEE international symposium of circuits systems, pp 2377–2380

  • Sunar B, Martin W, Stinson D (2007) A provably secure true random number generator with built-in tolerance to active attacks. IEEE Trans Comput 56(1):109–119

    Article  MathSciNet  MATH  Google Scholar 

  • Tokunaga C, Blaauw D, Mudge T (2008) True random number generator with a metastability-based qualitycontrol. IEEE J Solid State Circuits 43(1):78–85

    Article  Google Scholar 

  • Tougaw P, Lent C (1996) Dynamic behavior of quantum cellular automata. J Appl Phys 80(8):4722–4736

    Article  Google Scholar 

  • Walus K, Dysart T, Jullien G, Budiman R (2004) QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3:26–31

    Article  Google Scholar 

  • Wang Y, Cai H, Naviner L, Klein J, Yang J, Zhao W (2016) A novel circuit design of true random number generator using magnetic tunnel junction. In: IEEE/ACM international symposium on nanoscale architectures (NANOARCH), pp 123–128

  • Wold K, Tan C (2009) Analysis and enhancement of random number generator in FPGA based on oscillator rings. In: International journal of reconfigurable computing, p 4

  • Zhang L, Kong Z, Chang C (2013) PCKGen: a phase change memory based cryptographic key generator. In: Proceedings of IEEE international symposium on circuits and systems, pp 1444–1447

  • Zhang L, Fong X, Chang C, Kong Z, Roy K (2015) Optimizating emerging non-volatile memories for dual-mode applications: data storage and key generator. IEEE Trans Comput Aided Des Integr Circuits Syst 34(7):1176–1187

    Article  Google Scholar 

Download references

Acknowledgements

The authors Dr. Kunal Das, Arindam Sadhu are grateful to The SCIENCE & ENGINEERING RESEARCH BOARD (DST-SERB), Govt. of. India, for providing with the grant for accomplishment of the project under the Project File No. CR/2016/000613.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadhu, A., Das, K., De, D. et al. SSTRNG: self starved feedback SRAM based true random number generator using quantum cellular automata. Microsyst Technol 26, 2203–2215 (2020). https://doi.org/10.1007/s00542-019-04525-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-019-04525-w

Navigation