Skip to main content

Advertisement

Log in

Overview of Researches on the Nondestructive Testing Method of Metal Magnetic Memory: Status and Challenges

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

More than 20 years of research progress regarding the nondestructive testing method of metal magnetic memory is reviewed and summarized in detail. Consequently, this overview is selective, covering what we feel are the most important trends of experimental phenomena, mechanism explanations, quantitative theories, simulations, testing, evaluation and application. From analyzing the current state of research on the method of metal magnetic memory, some key problems and future developmental trends are proposed. Although the research on magnetic memory method has made great progress, the practical application still faces problems such as complex influencing factors and less quantitative research. In the future, for magnetic memory method, it is necessary to strengthen the microscopic observations of magnetic domains, experiments of magnetomechanical constitutive, establishment of quantitative models, modeling of complex influencing factors, and the study of identification, inversion and criteria. In addition, the combination of other non-destructive testing methods can greatly improve the practical application of the magnetic memory method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47

Similar content being viewed by others

References

  1. Jiles, D.C.: Review of magnetic methods for nondestructive evaluation. NDT Int 23(2), 83–92 (1990)

    Google Scholar 

  2. Yao, Y., Tung, S.T.E., Glisic, B.: Crack detection and characterization techniques: an overview. Struct Control Hlth Monitor 21(12), 1387–1413 (2014)

    Google Scholar 

  3. Adewale, I.D. Multiple parameters based pulsed eddy current non-destructive testing and evaluation (2015)

  4. Coramik, M., Ege, Y.: Discontinuity inspection in pipelines: a comparison review. Measurement 111, 359–373 (2017)

    Google Scholar 

  5. Felice, M.V., Zheng, F.: Sizing of flaws using ultrasonic bulk wave testing: a review. Ultrasonics 88, 26–42 (2018)

    Google Scholar 

  6. Suzuki, M., Komura, I., Takahashi, H.: Nondestructive estimation of residual stress in welded pressure vessel steel by means of remanent magnetization measurement. Int J Pres Ves Pip 6(2), 87–112 (1978)

    Google Scholar 

  7. Atherton, D., Coathup, L., Jiles, D., et al.: Stress induced magnetization changes of steel pipes: laboratory tests. IEEE Trans Magn 19(4), 1564–1568 (1983)

    Google Scholar 

  8. Atherton, D., Welbourn, C., Jiles, D., et al.: Stress-induced magnetization changes of steel pipes: laboratory tests Part II. IEEE Trans Magn 20(6), 2129–2136 (1984)

    Google Scholar 

  9. Atherton, D.L., Jiles, D.C.: Effects of stress on magnetization. NDT Int 19(1), 15–19 (1986)

    Google Scholar 

  10. Dubov, A.A.: A study of metal properties using the method of magnetic memory. Metal Sci Heat Treat 39(9), 401–405 (1997)

    Google Scholar 

  11. Shi, P.P., Zheng, X.J.: Magnetic charge model for 3D MMM signals. Nondestruct Test Eval 31(1), 45–60 (2016)

    Google Scholar 

  12. Jiles, D.C.: Theory of the magnetomechanical effect. J Phys D 28(8), 1537–1546 (1995)

    Google Scholar 

  13. Wang, Z.D., Gu, Y., Wang, Y.S.: A review of three magnetic NDT technologies. J Magn Magn Mater 324(4), 382–388 (2012)

    Google Scholar 

  14. Bao, S., Fu, M.L., Hu, S.N., Gu, Y.B., Lou, H.J.: A review of the metal magnetic memory technique. ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering (2016). https://doi.org/10.1115/OMAE2016-54269

  15. Shen, G.T., Hu, B., Xu, Y.C., et al.: China Non-destructive Testing 2025 Technology Development Strategy. Standards Press of China, Beijing (2017)

    Google Scholar 

  16. Dubov, A.A.: Development of a metal magnetic memory method. Chem Petrol Eng 47(11–12), 837–839 (2012)

    Google Scholar 

  17. Tanasienko, A.G., Suntsov, S.I., Dubov, A.A.: Monitoring chemical plant by a metal magnetic memory method. Chem Petrol Eng 38(9–10), 624–629 (2002)

    Google Scholar 

  18. Kuleev, V.G., Dubov, A.A., Lopatin, V.V.: Zero-level lines of scattered field on surfaces of ferromagnetic steel pipes with flaws. Russ J Nondestruct Test 38(5), 343–356 (2002)

    Google Scholar 

  19. Dubov, A.A.: Detection of metallurgical and production defects in engineering components using metal magnetic memory. Metallurgist 59(1–2), 164–167 (2015)

    Google Scholar 

  20. Pengpeng, S.: Quantitative study of micro-magnetic nondestructive testing for stress and defect in ferromagnetic materials. Xidian University, China, Thesis (2017)

    Google Scholar 

  21. Joule, J.P.: On a new class of magnetic forces. Ann. Electr. Magn. Chem 1842(8), 219–224 (1842)

    Google Scholar 

  22. Villari, E.: Change of magnetization by tension and by electric current. Ann. Phys. Chem 126, 87–122 (1865)

    Google Scholar 

  23. Jiles, D.: Introduction to Magnetism and Magnetic Materials. CRC Press, Boca Raton (2015)

    Google Scholar 

  24. Zhang, P., Liu, L., Chen, W.M.: Analysis of characteristics and key influencing factors in magnetomechanical behavior for cable stress monitoring. Acta Phys. Sin. 62(17), 177501–177501 (2013)

    Google Scholar 

  25. Shi, P.P., Jin, K., Zhang, P.C., et al.: Quantitative inversion of stress and crack in ferromagnetic materials based on metal magnetic memory method. IEEE Trans. Magn. 54(10), 6202011 (2018)

    Google Scholar 

  26. Craik, D.J., Wood, M.J.: Magnetization changes induced by stress in a constant applied field. J. Phys. D Appl. Phys. 3(7), 1009 (1970)

    Google Scholar 

  27. Jian, X.L., Jian, X.C., Deng, G.Y.: Experiment on relationship between the magnetic gradient of low-carbon steel and its stress. J. Magn. Magn. Mater. 321(21), 3600–3606 (2009)

    Google Scholar 

  28. Long, F.F., Wang, J.Z., Gao, G.Z., et al.: Tempering effect and tensile properties evaluation of C45 steel based on magnetic memory technology. Mater. Eval. 72(11), 1414–1420 (2014)

    Google Scholar 

  29. Shui, G.S., Li, C.W., Yao, K.: Non-destructive evaluation of the damage of ferromagnetic steel using metal magnetic memory and nonlinear ultrasonic method. Int. J. Appl. Electromagn. Mech. 47(4), 1023–1038 (2015)

    Google Scholar 

  30. Chen, S.L., Pang, Y., Tang, Y.L., et al.: Metal magnetic memory testing method of multiple lift-off values. Nanotechnol. Prec. Eng. 14(6), 421–428 (2016)

    Google Scholar 

  31. Chen, H.L., Wang, C.L., Zhu, H.Y.: Metal magnetic memory test method based on magnetic gradient tensor. Chin. J. Sci. Instrum. 37(3), 602–609 (2016)

    Google Scholar 

  32. Xu, K.S., Qiu, X.Q., Tian, X.S.: Theoretical investigation of metal magnetic memory testing technique for detection of magnetic flux leakage signals from buried defect. Nondestruct. Test Eval. 33(1), 45–55 (2017)

    Google Scholar 

  33. Su, H., Chen, M.: Magnetic memory signal changes of 45# steel in the process of fatigue. Int. J. Appl. Electromagn. Mech. 52(3), 1623–1628 (2016)

    Google Scholar 

  34. Payne, M.A.: SI and Gaussian CGS units, conversions and equations for use in geomagnetism. Phys. Earth Planet. Inter. 26, P10–P16 (1981)

    Google Scholar 

  35. Lin, J.M., Sha, H.: A new nondestructive testing technique based on magnetic memory effect. Nondestruct. Test 22(7), 297–299 (2000)

    Google Scholar 

  36. Huang, S.L., Li, L.M., Wang, L.F., et al.: Stress distribution testing by metal magnetic memory method. Nondestruct. Test 24(5), 212–214 (2002)

    Google Scholar 

  37. Zhang, W.M., Doubov, A.A., Sun, H.T., et al.: The metal magnetic memory phenomenon of high-strength steel in the process of grinding. Acta Armamentarii 26(03), 375–378 (2005)

    Google Scholar 

  38. Wilson, J.W., Gui, Y.T., Barrans, S.: Residual magnetic field sensing for stress measurement. Sensor Actuat. A-Phys. 135(2), 381–387 (2007)

    Google Scholar 

  39. Doubov, A.A. Physical base of the method of metal magnetic memory – own magnetic field of dislocations. Conference Proceedings AMAS. Centre of Excellence for Advanced Materials and Structures 2, 1–9 (2002)

  40. Ren, J.L., Chen, C., Liu, C.K., et al.: Experimental research on microcosmic mechanism of stress-magnetic effect for magnetic memory testing. J. Aeronaut. Mater. 28(5), 41–44 (2008)

    Google Scholar 

  41. Qiu, F.S., Ren, W., Tian, G.Y., Gao, B.: Characterization of applied tensile stress using domain wall dynamic behavior of grain-oriented electrical steel. J. Magn. Magn. Mater. 432, 250–259 (2017)

    Google Scholar 

  42. Qiu, F.S., Klug, M.J., Tian, G.Y., Hu, P., McCord, J.: Influence of magnetic domain wall orientation on Barkhausen noise and magneto-mechanical behavior in electrical steel. J. Phys. D Appl. Phys. 52, 265001 (2019)

    Google Scholar 

  43. Bao, S., Liu, X., Zhang, D.: Variation of residual magnetic field of defective U75V steel subjected to tensile stress. Strain 51(5), 370–378 (2015)

    Google Scholar 

  44. Yao, K.: Experimental Research on Testing and Evaluation of Early Damage of Ferromagnetic Materials Based on Metal Magnetic Memory Method. Beijing Jiaotong University, Beijing (2014)

    Google Scholar 

  45. Roskosz, M., Gawrilenko, P.: Analysis of changes in residual magnetic field in loaded notched samples. NDT&E Int. 41(7), 570–576 (2008)

    Google Scholar 

  46. Guo, P.J., Chen, T., Lian, X.M., et al.: Detection of cracks in 25Cr35NiNb ethylene pyrolysis furnace tubes by metal magnetic memory technique. J. Press. Vess. Technol. 139(2), 024501 (2017)

    Google Scholar 

  47. Leng, J.C., Xu, M.Q., Li, J.W., et al.: Characterization of the elastic-plastic region based on magnetic memory effect. Chin. J. Mech. Eng. 23(4), 532–536 (2010)

    Google Scholar 

  48. Dong, L.H., Xu, B.S., Dong, S.Y., et al.: Metal magnetic memory signals from surface of low-carbon steel and low-carbon alloyed steel. J. Cent. South Univ. Technol. 14(1), 24–27 (2007)

    MathSciNet  Google Scholar 

  49. Dong, L.H., Xu, B.S., Dong, S.Y., et al.: Variation of stress-induced magnetic signals during tensile testing of ferromagnetic steel. NDT&E Int. 41(3), 184–189 (2008)

    Google Scholar 

  50. Dong, L.H., Xu, B.S., et al.: Stress dependence of the spontaneous stray field signals of ferromagnetic steel. NDT&E Int. 42(4), 323–327 (2009)

    Google Scholar 

  51. Shi, C.L., Dong, S.Y., Xu, B.S., et al.: Metal magnetic memory effect caused by static tension load in a case-hardened steel. J. Magn. Magn. Mater. 322(4), 413–416 (2010)

    Google Scholar 

  52. Bao, S., Lin, L., Zhang, D., et al.: Characterization of stress-induced residual magnetic field in ferromagnetic steel. 34th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, V004T03A029-V004T03A029 (2015)

  53. Huang, H.H., Yang, C., Qian, Z.C., et al.: Magnetic memory signals variation induced by applied magnetic field and static tensile stress in ferromagnetic steel. J. Magn. Magn. Mater. 416, 213–219 (2016)

    Google Scholar 

  54. Shi, P.P., Jin, K., Zheng, X.J.: A magnetomechanical model for the magnetic memory method. Int. J. Mech. Sci. 124, 229–241 (2017)

    Google Scholar 

  55. Ren, S.K., Ren, X.Z.: Studies on laws of stress-magnetization based on magnetic memory testing technique. J. Magn. Magn. Mater. 499, 165–171 (2018)

    Google Scholar 

  56. Zhang, W.M., Liu, H.G., Yuan, J.J., et al.: Change of weak magnetic signals and metal magnetic memory effects during the torsion of low carbon steel. Trans Beijing Inst. Technol. 25(11), 1003–1007 (2005)

    Google Scholar 

  57. Xing, H.Y., Fan, J.M., Li, X.F., et al.: Bend deformation state of ferromagnetic materials based on metal magnetic memory theory. J. Harbin Inst. Technol. 38(7), 1017–1019 (2006)

    Google Scholar 

  58. Roskosz, M., Bieniek, M.: Evaluation of residual stress in ferromagnetic steel based on residual magnetic field measurements. NDT&E Int. 45(1), 55–62 (2012)

    MATH  Google Scholar 

  59. Roskosz, M., Bieniek, M.: Analysis of the similarity between residual magnetic field distribution and the stress and strain state for 7CrMoVTiB10–10 (T/P24) steel. Int Symp Appl Electromagn Mech 521–527 (2012)

  60. Roskosz, M., Bieniek, M.: Analysis of the universality of the residual stress evaluation method based on residual magnetic field measurements. NDT&E Int. 54(3), 63–68 (2013)

    MATH  Google Scholar 

  61. Hu, B., Yu, R.: Variations in surface residual compressive stress and magnetic induction intensity of 304 stainless steel. NDT&E Int. 80, 1–5 (2016)

    Google Scholar 

  62. Yao, K., Wu, L.B., Wang, Y.S.: Nondestructive Evaluation of contact damage of ferromagnetic materials based on metal magnetic memory method. Exper Technique 43(3), 273–285 (2019)

    Google Scholar 

  63. Li, J.W., Xu, M.Q.: Influence of uniaxial plastic deformation on surface magnetic field in steel. Meccanica 47(1), 135–139 (2012)

    MATH  Google Scholar 

  64. Li, J.W., Liang, X.Y., Han, X.M.: Influence of applied load in ferromagnetic material on magneto-mechanical phenomena. Insight Nondestruct Test Condition Monitor 58(6), 308–312 (2016)

    Google Scholar 

  65. Leng, J.C., Liu, Y., Zhou, G.Q., et al.: Metal magnetic memory signal response to plastic deformation of low carbon steel. NDT&E Int. 55(3), 42–46 (2013)

    Google Scholar 

  66. Guo, P.J., Chen, X.D., Guan, W.H., et al.: Correlation between magnetic memory signals and mechanical properties of 35CrMo tempered and quenched steel. Appl. Mech. Mater. 750, 186–191 (2015)

    Google Scholar 

  67. Usarek, Z., Augustyniak, B.: Evaluation of the impact of geometry and plastic deformation on the stray magnetic field around the bone-shaped sample. Int. J. Appl. Electromagn. Mech. 48, 195–199 (2015)

    Google Scholar 

  68. Qiu, Z.C., Zhang, W.M., Yu, X., et al.: Monitoring yield failure of ferromagnetic materials with spontaneous abnormal magnetic signals. Tehnički Vjesnik 22(4), 953–958 (2015)

    Google Scholar 

  69. Li, X.M., Lv, K.F., Li, G.T., et al.: Magnetic memory effect of Q235 steel under static tension condition. Phys. Exam Test 31(5), 10–13 (2013)

    Google Scholar 

  70. Zhong, L.Q., Li, L.M., Chen, X.: Simulation of magnetic field abnormalities caused by stress concentrations. IEEE Trans. Magn. 49(3), 1128–1134 (2013)

    Google Scholar 

  71. Yao, K., Wang, Z.D., Deng, B., et al.: Experimental research on metal magnetic memory method. Exper. Mech. 52(3), 305–314 (2012)

    Google Scholar 

  72. Bao, S., Lou, H.J., Fu, M.L., et al.: Correlation of stress concentration degree with residual magnetic field of ferromagnetic steel subjected to tensile stress. Nondestruct. Test Eval. 32(3), 255–268 (2017)

    Google Scholar 

  73. Li, X.M., Ding, H.S., Bai, S.W.: Research on the stress-magnetism effect of ferromagnetic materials based on three-dimensional magnetic flux leakage testing. NDT&E Int. 62(2), 50–54 (2014)

    Google Scholar 

  74. Ren, J.L., Wang, D.S., Song, K.: Experimental study on magnetic memory effect of typical ferromagnetism items. Nondestruct. Test. 27(8), 409–411 (2005)

    Google Scholar 

  75. Hu, B., Yu, R.Q., Zou, H.C.: Magnetic non-destructive testing method for thin-plate aluminum alloys. NDT&E Int. 47, 66–69 (2012)

    Google Scholar 

  76. Li, Z.C., Dixon, S., Cawley, P., et al.: Experimental studies of the magneto-mechanical memory (MMM) technique using permanently installed magnetic sensor arrays. NDT&E Int. 92, 136–148 (2017)

    Google Scholar 

  77. Kolokolnikov, S.M., Dubov, A.A., Marchenkov, A.Y.: Determination of mechanical properties of metal of welded joints by strength parameters in the stress concentration zones detected by the metal magnetic memory method. Weld World 58(5), 699–706 (2014)

    Google Scholar 

  78. Li, Z.C., Dixon, S., Cawley, P., et al.: Study of metal magnetic memory (MMM) technique using permanently installed magnetic sensor arrays. Rev. Progress Quant. Nondestruct. Eval. 1806(1), 110011 (2017)

    Google Scholar 

  79. Roskosz, M.: Metal magnetic memory testing of welded joints of ferritic and austenitic steel. NDT&E Int. 44(3), 305–310 (2011)

    Google Scholar 

  80. Bao, S., Fu, M.L., Lou, H.J., et al.: Evaluation of stress concentration of a low carbon steel based on residual magnetic field measurements. Insight Nondestruct. Test Condition Monitor. 58(12), 678–682 (2016)

    Google Scholar 

  81. Bao, S., Bai, S.Z., Mustapha, A., et al.: Property evaluation of Q345 welded steel by tangential residual magnetic field. ASME 2017, International Conference on Ocean, Offshore and Arctic Engineering V004T03A038 (2017)

  82. Zheng, X.J., Liu, X.E.: A nonlinear constitutive model for Terfenol-D rods. J. Appl. Phys. 97(5), 053901 (2005)

    Google Scholar 

  83. Shi, P.P., Jin, K., Zheng, X.J.: A general nonlinear magnetomechanical model for ferromagnetic materials under a constant weak magnetic field. J. Appl. Phys. 119(14), 14103 (2016)

    Google Scholar 

  84. Yang, E., Li, L.M., Chen, X.: Magnetic field aberration induced by cycle stress. J. Magn. Magn. Mater. 312(1), 72–77 (2007)

    Google Scholar 

  85. Guo, P.J., Chen, X.D., Guan, W.H., et al.: Effect of tensile stress on the variation of magnetic field of low-alloy steel. J. Magn. Magn. Mater. 323(20), 2474–2477 (2011)

    Google Scholar 

  86. Leng, J.C., Xu, M.Q., Zhou, G.Q., et al.: Effect of initial remanent states on the variation of magnetic memory signals. NDT&E Int. 52, 23–27 (2012)

    Google Scholar 

  87. Ren, S.K., Ren, X.Z., Duan, Z.X., et al.: Studies on influences of initial magnetization state on metal magnetic memory signal. NDT&E Int. 103, 77–83 (2019)

    Google Scholar 

  88. Xu, M.X., Xu, M.Q., Li, J.W., et al.: Discuss on using Jiles-Atherton theory for charactering magnetic memory effect. J. Appl. Phys. 112(9), 093902 (2012)

    Google Scholar 

  89. Li, J.W., Xu, M.Q., Leng, J.C., et al.: Modeling plastic deformation effect on magnetization in ferromagnetic materials. J. Appl. Phys. 111(6), 063909 (2012)

    Google Scholar 

  90. Leng, J.C., Li, L., Gao, Y.T., et al.: Modelling dependence of magnetic memory effect on plastic deformation in ferromagnetic materials. Mater. Sci. Technol. 30(1), 81–85 (2014)

    Google Scholar 

  91. Yao, K., Deng, B., Wang, Z.D.: Numerical studies to signal characteristics with the metal magnetic memory-effect in plastically deformed samples. NDT&E Int. 47, 7–17 (2012)

    Google Scholar 

  92. Shi, P.P., Zhang, P.C., Jin, K., et al.: Thermo-magneto-elastoplastic coupling model of metal magnetic memory testing method for ferromagnetic materials. J. Appl. Phys. 123(14), 145102 (2018)

    Google Scholar 

  93. Zeng, K., Tian, G.Y., Liu, J., et al.: Repeatability and stability study of residual magnetic field for domain wall characterization. J. Magn. Magn. Mater. 485, 391–400 (2018)

    Google Scholar 

  94. Pengpeng, S., Peigen, B., Chen Hong-en, Su, Sanqing, C.Z.: The magneto-elastoplastic coupling effect on the magnetic flux leakage signal. J. Magn. Magn. Mater. (2020). https://doi.org/10.1016/j.jmmm.2020.166669

    Article  Google Scholar 

  95. Pengpeng, S.: Analytical solutions of magnetic dipole model for defect leakage magnetic fields. NDT 37, 1–7 (2015)

    Google Scholar 

  96. Huang, H.H., Jiang, S.L., Yang, C., et al.: Stress concentration impact on the magnetic memory signal of ferromagnetic structural steel. Nondestruct. Test Eval. 29(4), 377–390 (2014)

    Google Scholar 

  97. Wang, Z.D., Yao, K., Deng, B., et al.: Theoretical studies of metal magnetic memory technique on magnetic flux leakage signals. NDT&E Int. 43(4), 354–359 (2010)

    Google Scholar 

  98. Wang, Z.D., Yao, K., Deng, B., et al.: Quantitative study of metal magnetic memory signal versus local stress concentration. NDT&E Int. 43(6), 513–518 (2010)

    Google Scholar 

  99. Roskosz, M., Rusin, A., Bieniek, M.: Analysis of relationships between residual magnetic field and residual stress. Meccanica 48(1), 45–55 (2013)

    MATH  Google Scholar 

  100. Su, S., Ma, X., Wang, W., Yang, Y.Y.: Stress-dependent magnetic charge model for micro-defects of steel wire based on the magnetic memory method. Res. Nondestr. Eval. 31(1), 24–47 (2020)

    Google Scholar 

  101. Yang, L.J., Liu, B., Chen, L.J., et al.: The quantitative interpretation by measurement using the magnetic memory method (MMM)-based on density functional theory. NDT&E Int. 55, 15–20 (2013)

    Google Scholar 

  102. Wang, G.Q., Yan, P., Wei, L.W., et al.: The magnetic memory effect of ferromagnetic materials in the process of stress-magnetism coupling. Adv Mater Sci Eng 1284560 (2017)

  103. Liu, B., He, Y.Y., Zhang, H., et al.: Study on characteristics of magnetic memory testing signal based on the stress concentration field. IET Sci. Meas. Technol. 11(1), 2–8 (2017)

    Google Scholar 

  104. Liu, B., Fu, Y., Jian, R.: Modelling and analysis of magnetic memory testing method based on the density functional theory. Nondestruct. Test Eval. 30(1), 13–25 (2015)

    Google Scholar 

  105. Liu, B., Xue, X.M., Li, J.M., et al.: Grain size effect on metal magnetic memory signal for stress damage evaluation of low carbon steel. Nondestruct. Test Eval. 34(3), 267–282 (2019)

    Google Scholar 

  106. Liu, B., Fu, Y., Xu, B.: Study on metal magnetic memory testing mechanism. Res. Nondestruct Eval. 26(1), 1–12 (2015)

    Google Scholar 

  107. Carman, G.P., Mitrovic, M.: Nonlinear constitutive relations for magnetostrictive materials with applications to 1-D problems. J. Intell. Mater. Syst. Struct. 6(5), 673–683 (1995)

    Google Scholar 

  108. Wan, Y.P., Fang, D.N., Hwang, K.C.: Non-linear constitutive relations for magnetostrictive materials. Int. J. Non-Linear Mech. 38(7), 1053–1065 (2003)

    MATH  Google Scholar 

  109. Duenas, T.A., Hsu, L., Cakman, G.P.: Magnetostrictive composite material systems analytical/experimental. MRS Proc. 459, 527 (1996)

    Google Scholar 

  110. Zheng, X.J., Sun, L.: A nonlinear constitutive model of magneto-thermo-mechanical coupling for giant magnetostrictive materials. J. Appl. Phys. 100(6), 063906 (2006)

    Google Scholar 

  111. Sun, L., Zheng, X.J.: Numerical simulation on coupling behavior of Terfenol-D rods. Int. J. Solids Struct. 43(6), 1613–1623 (2006)

    MATH  Google Scholar 

  112. Zheng, X.J., Sun, L.: A one-dimension coupled hysteresis model for giant magnetostrictive materials. J. Magn. Magn. Mater. 309(2), 263–271 (2007)

    Google Scholar 

  113. Jin, K., Kou, Y., Zheng, X.J.: A nonlinear magneto-thermo-elastic coupled hysteretic constitutive model for magnetostrictive alloys. J. Magn. Magn. Mater. 324(12), 1954–1961 (2012)

    Google Scholar 

  114. Jin, K., Kou, Y., Liang, Y.R., et al.: Effects of hysteresis losses on dynamic behavior of magnetostrictive actuators. J. Appl. Phys. 110(9), 093908 (2011)

    Google Scholar 

  115. Ewing, J.A.: Magnetic induction in iron and other metals. The Electrician (1900)

  116. Huang, B.Y.: Numerical simulation study of coupling between stress and magnetism for magnetic memory effect of the welding crack. Tianjin University, Tianjun (2007)

    Google Scholar 

  117. Li, L.J., Wang, X.F., Yang, B.F., et al.: Simulation and experiment study of the ferromagnetic metal memory effect. Nondestruct. Test. 34(12), 37–40 (2012)

    Google Scholar 

  118. Li, X.M., Ding, H.S., Guo, G.M., et al.: Simulation of stress-magnetization effect for Q235 steel. J. Test. Meas. Technol. 27(2), 167–173 (2013)

    Google Scholar 

  119. Li, Y., Ren, S.K.: Magnetization reversal of ferromagnetic specimens under the static tension conditions. J. Iron Steel Res. 25(3), 30–33 (2013)

    Google Scholar 

  120. Ren, J.L., Shu, M.H., Song, K., et al.: Simulation of stress-magnetization effect on 18CrNi4A steel by ANSYS. J. Mater. Eng. 30(11), 40–44 (2009)

    Google Scholar 

  121. Li, J.W., Xu, M.Q.: Modified Jiles-Atherton-Sablik model for asymmetry in magnetomechanical effect under tensile and compressive stress. J. Appl. Phys. 110(6), 063918 (2011)

    Google Scholar 

  122. Wang, Z.D., Deng, B., Yao, K.: Physical model of plastic deformation on magnetization in ferromagnetic materials. J. Appl. Phys. 109(8), 083928 (2011)

    Google Scholar 

  123. Yao, K., Shen, K., Wang, Z.D., et al.: Three-dimensional finite element analysis of residual magnetic field for ferromagnets under early damage. J. Magn. Magn. Mater. 354, 112–118 (2014)

    Google Scholar 

  124. Bai, Y., Xu, F., Qiao, A.T.: Relationship between residual plastic deformation and metal magnetic memory signal and specimens. J. Mater. Eng. 3(8), 42–49 (2013)

    Google Scholar 

  125. Avakian, A., Ricoeur, A.: An extended constitutive model for nonlinear reversible ferromagnetic behaviour under magnetomechanical multiaxial loading conditions. J. Appl. Phys. 121(5), 053901 (2017)

    Google Scholar 

  126. Moonesan, M., Kashefi, M.: Effect of sample initial magnetic field on the metal magnetic memory NDT result. J. Magn. Magn. Mater. 460, 285–291 (2018)

    Google Scholar 

  127. Libo, Wu, Kai, Y., Pengpeng, S., Bingxun, Z., Yuesheng, W.: Influence of inhomogeneous stress on biaxial 3D magnetic flux leakage signals. NDT and E Int. 108, 102178 (2019)

    Google Scholar 

  128. Pengcheng, Z., Pengpeng, S., Ke, J., Xiaojing, Z.: A nonlinear anisotropic magneto-mechanical constitutive model and its application on magnetic memory testing method. J. Appl. Phys. 125(22), 233901 (2019)

    Google Scholar 

  129. Yuan, J.J., Zhang, W.M., Liu, H.G., et al.: Influence of dynamic tension load on weak magnetic signals and metal magnetic memory effects of ferromagnetic samples. Trans. Beijing Inst. Technol. 26(9), 785–788 (2006)

    Google Scholar 

  130. Yan, T.J., Zhang, J.D., Feng, G.D., et al.: Early inspection of wet steam generator tubes based on metal magnetic memory method. Procedia Eng. 15(1), 1140–1144 (2011)

    Google Scholar 

  131. Duan, Z.X., Ren, S.K., Xi, X.W., et al.: Magnetizing reversal characteristic of 40Cr steel during stress-magnetizing process. J. Iron Steel Res. 28(1), 77–80 (2016)

    Google Scholar 

  132. Shi, C.L., Dong, S.Y., Xu, B.S., et al.: Stress concentration degree affects spontaneous magnetic signals of ferromagnetic steel under dynamic tension load. NDT&E Int. 43(1), 8–12 (2010)

    Google Scholar 

  133. Wang, H.P., Dong, L.H., Dong, S.Y., et al.: Fatigue damage evaluation by metal magnetic memory testing. J. Cent South Uni.v 21(1), 65–70 (2014)

    MathSciNet  Google Scholar 

  134. Wang, H.T., Liu, P., Tian, G.Y., et al.: The accumulation mechanism of metal magnetic memory. Nondestruct. Test. 32(9), 670–674 (2010)

    Google Scholar 

  135. Dong, L.H., Xu, B.S., Dong, S.Y., et al.: Metal magnetic memory testing for early damage assessment in ferromagnetic materials. J. Cent South Univ. Technol. 12(S2), 102–106 (2005)

    Google Scholar 

  136. Dong, L.H., Xu, B.S., Dong, S.Y., et al.: Monitoring fatigue crack propagation of ferromagnetic materials with spontaneous abnormal magnetic signals. Int. J. Fatigue 30(9), 1599–1605 (2008)

    Google Scholar 

  137. Shi, C.L., Tang, W.X., Zhan, H., et al.: Characterization of crack initiation life in ferromagnetic material by metal magnetic memory testing. Mater. Sci. Forum 817(6), 791–796 (2015)

    Google Scholar 

  138. Chen, X., Li, L.M., Hu, B., et al.: Magnetic evaluation of fatigue damage in train axles without artificial excitation. Insight Nondestruct. Test Condition Monitor 48(6), 342–345 (2006)

    Google Scholar 

  139. Leng, J.C., Zhang, H., Wang, L.H., et al.: Research of magnetic memory signal characteristics corresponding to early fatigue damage. Int. J. Appl. Electromagn. Mech. 46(1), 143–154 (2014)

    Google Scholar 

  140. Xing, H.Y., Dang, Y.B., Wang, B., et al.: Quantitative metal magnetic memory reliability modeling for welded joints. Chin. J. Mech. Eng. 29(2), 372–377 (2016)

    Google Scholar 

  141. Qian, Z.C., Huang, H.H., Jian, S.L., et al.: Research on magnetic memory signal of ferromagnetic material under tensile and compressive fatigue loading. J. Electron Meas. Instrum. 30(4), 506–517 (2016)

    Google Scholar 

  142. Huang, H.H., Jiang, S.L., Wang, Y., et al.: Characterization of spontaneous magnetic signals induced by cyclic tensile stress in crack propagation stage. J. Magn. Magn. Mater. 365(365), 70–75 (2014)

    Google Scholar 

  143. Huang, H.H., Yao, J.Y., Li, Z.W., et al.: Residual magnetic field variation induced by applied magnetic field and cyclic tensile stress. NDT&E Int. 63(4), 38–42 (2014)

    Google Scholar 

  144. Huang, H.H., Han, G., Qian, Z.C., et al.: Characterizing the magnetic memory signals on the surface of plasma transferred arc cladding coating under fatigue loads. J. Magn. Magn. Mater. 443, 281–286 (2017)

    Google Scholar 

  145. Li, C.C., Dong, L.H., Wang, H.D., et al.: Metal magnetic memory technique used to predict the fatigue crack propagation behavior of 0.45%C steel. J. Magn. Magn. Mater. 405, 150–157 (2016)

    Google Scholar 

  146. Kolařík, K., Šimeček, J., Kříž, A., et al.: Using the Barkhausen-noise analysis and metal-magnetic-memory method for material characteristics under fatigue damage. Materiali in Tehnologije 51(3), 437–441 (2017)

    Google Scholar 

  147. Li, Y.F., Zeng, X.G., Wei, L.M., et al.: Characterizations of damage-induced magnetization for X80 pipeline steel by metal magnetic memory testing. Int. J. Appl. Electromagn. Mech. 54(1), 1–13 (2017)

    Google Scholar 

  148. Hu, B., Chen, G., Shen, G.T., et al.: Study on magnetic memory method (MMM) for fatigue evaluation. Proc. 17th World Conference on Nondestructive Testing 25–28 (2008)

  149. Huang, H.H., Jiang, S.L., Liu, R.J., et al.: Investigation of magnetic memory signals induced by dynamic bending load in fatigue crack propagation process of structural steel. J. Nondestruct. Eval. 33(3), 407–412 (2014)

    Google Scholar 

  150. Huang, H.H., Qian, Z.C., Yang, C., et al.: Magnetic memory signals of ferromagnetic weldment induced by dynamic bending load. Nondestruct. Test Eval. 32(2), 166–184 (2017)

    Google Scholar 

  151. Leng, J.C., Xu, M.X., Xu, M.Q., et al.: Magnetic field variation induced by cyclic bending stress. NDT&E Int. 42(5), 410–414 (2009)

    Google Scholar 

  152. Xu, M.X., Xu, M.Q., Li, J.W., et al.: Metal magnetic memory field characterization at early fatigue damage based on modified Jiles-Atherton model. J. Cent. South Univ. 19(6), 1488–1496 (2012)

    Google Scholar 

  153. Xu, M.X., Chen, Z.H., Xu, M.Q.: Micro-mechanism of metal magnetic memory signal variation during fatigue. Int. J. Min. Met. Mater. 21(3), 259–265 (2014)

    Google Scholar 

  154. Li, J.W., Zhong, S., Lv, G.P., et al.: The variation of surface magnetic field induced by fatigue stress. J. Nondestruct. Eval. 32(3), 238–241 (2013)

    Google Scholar 

  155. Hu, Z.B., Fan, J.C., Wu, S.N., et al.: Characteristics of metal magnetic memory testing of 35CrMo steel during fatigue loading. Metals 8(2), 119 (2018)

    Google Scholar 

  156. Qian, Z.C., Huang, H.H., Liu, W.J., et al.: Magnetomechanical model for coating/substrate interface and its application in interfacial crack propagation length characterization. J. Appl. Phys. 124(20), 203904 (2018)

    Google Scholar 

  157. Qian, Z.C., Huang, H.H.: Coupling fatigue cohesive zone and magnetomechanical model for crack detection in coating interface. NDT and E Int. 105, 25–34 (2019)

    Google Scholar 

  158. Guralnick, S.A., Bao, S., Erber, T.: Piezomagnetism and fatigue: II. J. Phys. D 41(11), 115006 (2008)

    Google Scholar 

  159. Bao, S., Jin, W.L., Huang, M.F., et al.: Piezomagnetic hysteresis as a non-destructive measure of the metal fatigue process. NDT&E Int. 43(8), 706–712 (2010)

    Google Scholar 

  160. Bao, S., Erber, T., Guralnick, S.A., et al.: Fatigue, magnetic and mechanical hysteresis. Strain 47(4), 372–381 (2011)

    Google Scholar 

  161. Bao, S., Gong, S.F.: Magnetomechanical behavior for assessment of fatigue process in ferromagnetic steel. J. Appl. Phys. 112(11), 113902 (2012)

    Google Scholar 

  162. Bao, S., Wang, J.: Magnetomechanical measurements for nondestructive evaluation of failure in steel structural element. J. Mater. Eng. Perform. 22(5), 1351–1354 (2013)

    Google Scholar 

  163. Bao, S., Fu, M.L., Gu, Y., et al.: Evolution of the piezomagnetic field of ferromagnetic steel subjected to cyclic tensile stress with variable amplitudes. Exper Mech. 56(6), 1017–1028 (2016)

    Google Scholar 

  164. Chen, Z.M., Aoto, K., Kato, S.: Passive electromagnetic NDE for mechanical damage inspection by detecting leakage magnetic flux. Japan Nuclear Cycle Development Inst (1999).

  165. Chen, Z.M., Aoto, K., Miya, K.: NDE of fatigue damap in austenitic stainless steel by measuring and inversion of damage-induced magnetic field. In: Kojima, F., Takagi, T., Udpa, T., Pavo, J. (eds.) Electromagnetic Nondestructive Evaluation 127–134 (2002)

  166. Li, H.M., Chen, Z.M., Li, Y.: Characterization of damage-induced magnetization for 304 austenitic stainless steel. J. Appl. Phys. 110(11), 114907 (2011)

    Google Scholar 

  167. Li, H.M., Chen, Z.M., Li, Y., et al.: Dependence of deformation-induced magnetic field on plastic deformation for SUS304 stainless steel. Int. J. Appl. Electromagn. Mech. 38(1), 17–26 (2012)

    Google Scholar 

  168. Bai, P.G., Shi, P.P., Zhao, Y.S., Chen, H.E., Xie, S.J., Chen, Z.M.: Joint effect of residual stress and plastic deformation on pulsed eddy current response signals in 304 austenitic stainless steel. Int. J. Appl. Electromagn. Mech. (2019). https://doi.org/10.3233/JAE-190124

    Article  Google Scholar 

  169. Yan, C.Y., Li, W.S., Di, X.J., et al.: Variation regularity of metal magnetic memory signals with inspecting time-interval and location. J. Cent. South Univ. 14(3), 319–323 (2007)

    Google Scholar 

  170. Zhong, L.Q., Li, L.M., Chen, X.: Magnetic signals of stress concentration detected in different magnetic environment. Nondestruct. Test Eval. 25(2), 161–168 (2010)

    Google Scholar 

  171. Hu, B., Li, L., Chen, X., et al.: Study on the influencing factors of magnetic memory method. Int. J. Appl. Electromagn. Mech. 33(3–4), 1351–1357 (2010)

    Google Scholar 

  172. Bao, S., Hu, S.N., Lin, L., et al.: Experiment on the relationship between the magnetic field variation and tensile stress considering the loading history in U75V rail steel. Insight Nondestruct. Test Condition Monitor 57(12), 683–688 (2015)

    Google Scholar 

  173. Bao, S., Zhang, D.: The effect of loading speed on the residual magnetic field of ferromagnetic steel subjected to tensile stress. Insight Nondestruct. Test Condition Monitor 57(7), 401–405 (2015)

    Google Scholar 

  174. Huang, H.H., Qian, Z.C.: Effect of temperature and stress on residual magnetic signals in ferromagnetic structural steel. IEEE Trans. Magn. 53(1), 1–8 (2017)

    Google Scholar 

  175. Xu, K.S., Qiu, X.Q., Tian, X.S.: Investigation of metal magnetic memory signals of welding cracks. J. Nondestruct. Eval. 36(2), 20 (2017)

    Google Scholar 

  176. Singh, W.S., Stegemann, R., Kreutzbruck, M., et al.: Mapping of deformation-induced magnetic fields in carbon steels using a GMR sensor based metal magnetic memory technique. J. Nondestruct. Eval. 37(2), 21 (2018)

    Google Scholar 

  177. Sun, Y., Liu, S., Ye, Z., et al.: A defect evaluation methodology based on multiple magnetic flux leakage (MFL) testing signal eigenvalues. Res. Nondestruct. Eval. 27(1), 1–25 (2016)

    Google Scholar 

  178. Ramuhalli, P., Udpa, L., Udpa, S.S.: Electromagnetic NDE signal inversion by function-approximation neural networks. IEEE Trans. Magn. 38(6), 3633–3642 (2002)

    Google Scholar 

  179. Kishimoto, M., Sakasai, K., Ara, K.: Solution of electromagnetic inverse problem using combinational method of Hopfield neural network and genetic algorithm. J. Appl. Phys. 79(1), 1–7 (1996)

    Google Scholar 

  180. Khodayari-Rostamabad, A., Reilly, J.P., Nikolova, N.K., et al.: Machine learning techniques for the analysis of magnetic flux leakage images in pipeline inspection. IEEE Trans. Magn. 45(8), 3073–3084 (2009)

    Google Scholar 

  181. Hari, K.C., Nabi, M., Kulkarni, S.V.: Improved FEM model for defect-shape construction from MFL signal by using genetic algorithm. IET Sci. Meas. Technol. 1(4), 196–200 (2007)

    Google Scholar 

  182. Khan, T., Ramuhalli, P.: A recursive bayesian estimation method for solving electromagnetic nondestructive evaluation inverse problems. IEEE Trans. Magn. 44(7), 1845–1855 (2008)

    Google Scholar 

  183. Zhang, Y., Ye, Z.F., Wang, C.: A fast method for rectangular crack sizes reconstruction in magnetic flux leakage testing. NDT&E Int. 42(5), 369–375 (2009)

    Google Scholar 

  184. Han, W., Xu, J., Wang, P., et al.: Defect profile estimation from magnetic flux leakage signal via efficient managing particle swarm optimization. Sensors 14(6), 10361–10380 (2014)

    Google Scholar 

  185. Cai, C., Rodet, T., Lambert, M.: Influence of partially known parameter on flaw characterization in eddy current testing by using a random walk MCMC method based on metamodeling. J. Phys. Conf. Ser. 542(1), 012009 (2014)

    Google Scholar 

  186. Priewald, R.H., Magele, C., Ledger, P.D., et al.: Fast magnetic flux leakage signal inversion for the reconstruction of arbitrary defect profiles in steel using finite elements. IEEE Trans. Magn. 49(1), 506–516 (2013)

    Google Scholar 

  187. Chen, Z.M., Miya, K.: ECT inversion using a knowledge-based forward solver. J. Nondestruct Eval. 17(3), 167–175 (1998)

    Google Scholar 

  188. Chen, Z.M., Aoto, K., Miya, K.: Reconstruction of cracks with physical closure from signals of eddy current testing. IEEE Trans. Magn. 36(4), 1018–1022 (2000)

    Google Scholar 

  189. Chen, Z.M., Preda, G., Mihalache, O., et al.: Reconstruction of crack shapes from the MFLT signals by using a rapid forward solver and an optimization approach. IEEE Trans. Magn. 38(2), 1025–1028 (2002)

    Google Scholar 

  190. Rebican, M., Chen, Z.M., Yusa, N., et al.: Shape reconstruction of multiple cracks from ECT signals by means of a stochastic method. IEEE Trans. Magn. 42(4), 1079–1082 (2006)

    Google Scholar 

  191. Xie, S.J., Chen, Z.M., Toshiyuki, T., et al.: Quantitative non-destructive evaluation of wall thinning defect in double-layer pipe of nuclear power plants using pulsed ECT method. NDT&E Int. 75, 87–95 (2015)

    Google Scholar 

  192. Dubov, A.A.: Diagnostics of steam turbine disks using the metal magnetic memory method. Therm. Eng. 57(1), 16–21 (2010)

    Google Scholar 

  193. Doubov, A., Demin, E., Milyaev, A., et al.: The experience of gas pipeline stress-strain state control with usage of the metal magnetic memory method as compared with conventional methods and stress control means. Weld. World 46(9–10), 29–33 (2002)

    Google Scholar 

  194. Dubov, A., Kolokolnikov, S.: Comprehensive diagnostics of parent metal and welded joints of steam pipeline bends. Weld. World 54(9/10), 241–248 (2010)

    Google Scholar 

  195. Dubov, A., Kolokolnikov, S.: Assessment of the material state of oil and gas pipelines based on the metal magnetic memory method. Weld. World 56(3–4), 11–19 (2012)

    Google Scholar 

  196. Li, C., Chen, C., Liao, K.: A quantitative study of signal characteristics of non-contact pipeline magnetic testing. Insight-Non-Destructive Test. Condit. Monitor. 57(6), 324–330 (2015)

    Google Scholar 

  197. Liu, B., Ma, Z., Liu, Z., et al.: Research on internal detection technology for axial crack of long-distance oil and gas pipeline based on micromagnetic method. Struct. Health Monitor. (2019). https://doi.org/10.1177/1475921719877361

    Article  Google Scholar 

  198. Liu, B., He, L., Ma, Z., Zhang, H., Sfarra, S., Fernandes, H., Perilli, S.: Study on internal stress damage detection in long-distance oil and gas pipelines via weak magnetic method. ISA Trans. 89, 272–280 (2019)

    Google Scholar 

  199. Liu, B., He, L., Zhang, H., Sfarra, S., Fernandes, H., Perilli, S., Ren, J.: Research on stress detection technology of long-distance pipeline applying non-magnetic saturation. IET Sci. Meas. Technol. 13(2), 168–174 (2019)

    Google Scholar 

  200. Chenhui, K., et al.: Experiment research on the metal magnetic memory in gear micro crack detection. Proceedings of the 2011 IEEE International Conference on Mechatronics and Automation, August 7–10, Beijing, China

  201. Roskosz, M., Rusin, A., Kotowicz, J.: The metal magnetic memory method in the diagnostics of power machinery component. J. Achiev. Mater. Manuf. Eng. 1, 362–370 (2010)

    Google Scholar 

  202. Roskosz, M.: Application of the metal magnetic memory method for the inspection of teeth in toothed wheels. Tech. Inspect. 1, 15–20 (2006)

    Google Scholar 

  203. Roskosz M. Possibilities of the application of the metal magnetic memory method to the analysis of gear durability. Proceedings of the 9th European Conference on Non-Destructive Testing ECNDT, Berlin. 2006.

  204. Dubov, A., Kolokolnikov, S.: Application of the metal magnetic memory method for detection of defects at the initial stage of their development for prevention of failures of power engineering welded steel structures and steam turbine parts. Weld. World 58(2), 225–236 (2014)

    Google Scholar 

  205. Dubov, A., Kolokolnikov, S.: The metal magnetic memory method application for online monitoring of damage development in steel pipes and welded joints specimens. Weld. World 57, 123–136 (2013)

    Google Scholar 

  206. Li, L.M., Huang, S.L., Wang, X.F., Shi, K.R., Wu, S.: Magnetic field abnormality caused by welding residual stress. J. Magn. Magn. Mater. 261, 385–391 (2003)

    Google Scholar 

  207. Li, W.S., Di, X.J., Bai, S.W., Liu, F.M., Xue, Z.K.: Feature analysis of metal magnetic memory signals for weld cracking-based on wavelet energy spectrum. Insight-Non-Destruct. Test. Condition Monitor. 48(7), 426–429 (2006)

    Google Scholar 

  208. Yang, Y., Su, S., Wang, W., Ma, X.P., Hu, J.Y.: Comparative study on the characteristics of magnetic memory signals for welding and non-welding steels with different materials under tension-compression fatigue. Int. J. Appl. Electromagnet. Mech. (2020). https://doi.org/10.3233/JAE-190064

    Article  Google Scholar 

  209. Xin, Qi, Shu, Di, Hui, L., Wei, W., Chen, J.: Magnetic Barkhausen noise, metal magnetic memory testing and estimation of the ship plate welded structure stress. J. Nondestr. Eval. 31(1), 80–89 (2012)

    Google Scholar 

  210. Su, S., Zhao, X.R., Wang, W., Zhang, X.H.: Metal magnetic memory inspection of Q345 steel specimens with butt weld in tensile and bending test. J. Nondestruct. Eval. 38, 64 (2019). https://doi.org/10.1007/s10921-019-0603-8

    Article  Google Scholar 

  211. Agnieszka, K.-S., Smoczek, J., Szpytko, J.: Crane frame inspection using metal magnetic memory method. J. KONES 23(2), 185–192 (2016)

    Google Scholar 

  212. Wang, W., Yi, S.C., Su, S.Q.: Experimental investigation of stress and damage characterization of steel beam buckling using magnetic memory signals. Struct. Des. Tall Special Build. 25(11), 505–518 (2016)

    Google Scholar 

  213. Su, S.Q., Wei, L.X., Wang, W., Yang, Y.Y., Ma, X.P., Zuo, F.L.: Equivalent stress for steel box girder with corrugated web under bending based on magnetic memory method. Int. J. Appl. Electromagnet. Mech. (2020). https://doi.org/10.3233/JAE-190075

    Article  Google Scholar 

  214. Dong, L.H., Xu, B.S., Xue, N., Wang, H.P., Lin, H.Y.: Development of remaining life prediction of crankshaft remanufacturing core. Adv. Manuf. 1, 91–96 (2013)

    Google Scholar 

  215. Lesiak, P., Radziszewski, A.: Application of the metal magnetic memory method in rail transport. Tech. Inspect. 2, 32–39 (2005)

    Google Scholar 

  216. Lesiak, P., Radziszewski, A.: Rail diagnostics with the use of the metal magnetic memory method. Scientific Works of the Technical University of Radom, Electrics 2(8), 103–110 (2004)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China [Grant Nos. 11802225] and the Natural Science Basic Research Plan in the Shaanxi Province of China [Program Nos. 2019JQ-261]. We also thank two anonymous reviewers for their helpful comments on an earlier draft of this paper. Particularly, Dr. Pengpeng Shi is deeply indebted to his supervisor Professor Xiaojing Zheng, who encouraged the author to write this review and provided some important guidance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengpeng Shi or Zhenmao Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, P., Su, S. & Chen, Z. Overview of Researches on the Nondestructive Testing Method of Metal Magnetic Memory: Status and Challenges. J Nondestruct Eval 39, 43 (2020). https://doi.org/10.1007/s10921-020-00688-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-020-00688-z

Keywords

Navigation