Skip to main content

Advertisement

Log in

The Fennoscandian ice sheet during the Late Weichselian: geothermal evidence

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Geothermal estimates of the ground surface temperatures for the last glacial cycle in Northern Europe have been analysed. During the Middle and Late Weichselian (55–12 kyr BP), a substantial part of this area was covered by the Fennoscandian ice sheet. The analysis of geothermal data allows reconstructing the limits of ice sheet extent and its basal thermal state in the Late Weichselian. Ground surface temperatures outside the ice sheet were extremely low (from − 7 to − 17 °C). Within the ice sheet, there were both thawed and frozen zones. The revealed temperature pattern is generally consistent with the modern one for ground surface temperatures in Greenland, which makes it possible to consider these ice sheets as analogues. The anomalous climatically induced surface heat flux and orbital insolation of the Earth varied consistently outside the glaciation and independently within the limits of the ice sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aschwanden A (2014) Thermodynamics of Glaciers. University of Alaska, Fairbanks, USA. https://glaciers.gi.alaska.edu/sites/default/files/Notes_thermodynamics_Aschwanden2014.pdf. Accessed 26 May 2020

  • Balling N, Lind G, Landström O, Eriksson KG, Malmqvist D (1990) Thermal measurements from the deep Gravberg-1 well. R. D&D Rep., U/G 57

  • Beltrami H, Smerdon JE, Pollack HN, Huang S (2002) Continental heat gain in the global climate system. Geophys Res Lett 29(8):8–1

    Google Scholar 

  • Beltrami H, Wang J, Bras RL (2000) Energy balance at the Earth's surface: Heat flux history in eastern Canada. Geophys Res Lett 27(20):3385–3388

    Google Scholar 

  • Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million of years. Quaternary Sciences Review 10(4):297–317

    Google Scholar 

  • Bolshiyanov DYu (2015) Scandinavian Ice Sheet—new data and proposes. Izvestia Russkogo geograficheskogo obshchestva 147:1–13 [in Russian]

    Google Scholar 

  • Chouinard C, Mareschal J-C (2009) Ground surface temperature history in southern Canada: temperatures at the base of the Laurentide ice sheet and during the Holocene. Earth Planet Sci Lett 277(1):280–289

    Google Scholar 

  • Cuffey KM, Clow GD, Alley RB, Stuiver M, Waddington ED, Saltus RW (1995) Large arctic temperature change at the Wisconsin–Holocene glacial transition. Science 270:455–458

    Google Scholar 

  • Dahl-Jensen D, Gundestrup N, Gogineni SP, Miller H (2003) Basal melt at NorthGRIP modeled from borehole, ice-core and radio-echo sounder observations. Ann Glaciol 37:207–212

    Google Scholar 

  • Dahl-Jensen D, Mosegaard K, Gundestrup N, Clow GD, Johnsen SJ, Hansen AW, Balling N (1998) Past temperatures directly from the Greenland Ice Sheet. Science 282:268–271

    Google Scholar 

  • Demezhko DY, Gornostaeva AA (2014) Reconstructions of long-term ground surface heat flux changes from deep-borehole temperature data. Russ Geol Geophys 55:1471–1475

    Google Scholar 

  • Demezhko DY, Gornostaeva AA (2015a) Late Pleistocene-Holocene ground surface heat flux changes reconstructed from borehole temperature data (the Urals, Russia). Clim Past 11(4):647–652

    Google Scholar 

  • Demezhko DYu, Gornostaeva AA (2015b) Reconstructing ground surface heat flux variations for the urals on the basis of geothermal and meteorological data. Izvestiya Atmos Oceanic Phys 7:723–736

    Google Scholar 

  • Demezhko D, Gornostaeva A, Majorowicz J, Šafanda J (2018) Temperature and heat flux changes at the base of Laurentide ice sheet inferred from geothermal data (evidence from province of Alberta, Canada). Int J Earth Sci (Geologische Rundschau) 107:113–121

    Google Scholar 

  • Demezhko DY, Gornostaeva AA, Tarkhanov GV, Esipko OA (2013) 30,000 years of ground surface temperature and heat flux changes in Karelia reconstructed from borehole temperature data. Bull Geography Phys Geography Ser 6:7–25

    Google Scholar 

  • Demezhko DY, Ryvkin DG, Outkin VI, Duchkov AD, Balobaev VT (2007) Spatial distribution of pleistocene/holocene warming amplitudes in Northern Eurasia inferred from geothermal data. Climate of the Past 3:559–568

    Google Scholar 

  • Demezhko DY, Shchapov VA (2001) 80,000 years ground surface temperature history inferred from the temperature-depth log measured in the superdeep hole SG-4 (the Urals, Russia). Global Planet Change 29(3):219–230

    Google Scholar 

  • Demidov IN (2006) On the maximum stage in the evolution of periglacial Lake Onega, variations in its water level and glacioisostatic coastal uplifts in Late Glacial time. Geology and commercial minerals of Karelia 9:171–182 [in Russian]

    Google Scholar 

  • Donner JJ, Lappalainen V, West RG (1968) Ice wedges in south-eastern Finland. Geologiska Föreningen i Stockholm Förhandlingar 90:112–116

    Google Scholar 

  • Farquharson CG, Oldenburg DW (2004) A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems. Geophys J Int 156:411–425

    Google Scholar 

  • Forsström PL (2005) Through a glacial cycle: simulation of the Eurasian ice sheet dynamics during the last glaciation. Annales Academiae Scientiarum Fennicae. Geologica-Geographica 168:94

    Google Scholar 

  • Fjeldskaar W, Lindholm C, Dehls JF, Fjeldskaar I (2000) Postglacial uplift, neotectonics and seismicity in Fennoscandia. Quatern Sci Rev 19:1413–1422

    Google Scholar 

  • Galushkin Y (1997) Numerical simulation of permafrost evolution as a part of sedimentary basin modeling: permafrost in the Pliocene-Holocene climate history of the urengoy field in the West Siberian basin. Can J Earth Sci 34:935–948

    Google Scholar 

  • Glaznev VN, Kukkonen IT, Raevskii AB, Jokinen J (2004) New data on thermal flow in the central part of the Kola Peninsula. Doclady Earth Sciences 396:512–514

    Google Scholar 

  • Harrison WD (1975) Temperature measurements in a temperate glacier. J Glaciol 14:23–30

    Google Scholar 

  • Harry DG, Gozdzik JS (1988) Ice wedges: growth, thaw transformation, and palaeoenvironmental significance. J Quat Sci 3:39–55

    Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109

    Google Scholar 

  • Huang S (2006) 1851–2004 annual heat budget of the continental landmasses. Geophys Res Lett 33(4):L04707. https://doi.org/10.1029/2005GL025300

    Article  Google Scholar 

  • Huijzer B, Vandenberghe J (1998) Climatic reconstruction of the Weichselian Pleniglacial in northwestern and central Europe. J Quat Sci 13:391–417

    Google Scholar 

  • Hughes T (2009) Modeling ice sheets from the bottom up. Quatern Sci Rev 28:1831–1849

    Google Scholar 

  • Hughes AL, Gyllencreutz R, Lohne ØS, Mangerud J, Svendsen JI (2016) The last Eurasian ice sheets–a chronological database and time-slice reconstruction, DATED-1. Boreas 45:1–45

    Google Scholar 

  • Kleman J, Glasser NF (2007) The subglacial thermal organization (STO) of ice sheets. Quatern Sci Rev 26:585–597

    Google Scholar 

  • Kleman J, Hättestrand C (1999) Frozen-bed Fennoscandian and Laurentide ice sheets during the last glacial maximum. Nature 402:63–66

    Google Scholar 

  • Kukkonen IT, Gosnold WD, Šafanda J (1998) Anomalously low heat flow density in eastern Karelia, Baltic Shield: a possible paleoclimate signature. Tectonophysics 291:235–249

    Google Scholar 

  • Kukkonen IT, Šafanda J (1996) Palaeoclimate and structure: the most important factors controlling subsurface temperatures in crystalline rocks. A case history from Outokumpu, eastern Finland. Geophys J Int 126(1):101–112

    Google Scholar 

  • Kukkonen IT, Rath V, Kivekäs L, Šafanda J, Čermak V (2011) Geothermal studies of the outokumpu deep drill hole, Finland: vertical variation in heat flow and palaeoclimatic implications. Phys Earth Planet Inter 188:9–25

    Google Scholar 

  • Kukkonen IT, Rath V, Korpisalo A (2015) Paleoclimatic Inversion of Ground Surface Temperature History from Geothermal Data on the Olkiluoto Drill Hole OL-KR56. Working Report 2015–49, Helsinki

  • Leeson AA, Shepherd A, Briggs K, Howat I, Fettweis X, Morlighem M, Rignot E (2015) Supraglacial lakes on the Greenland ice sheet advance inland under warming climate. Nat Clim Change 5:51–55

    Google Scholar 

  • Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends and extremes since 1500. Science 303:1499–1503

    Google Scholar 

  • MacGregor JA, Fahnestock MA, Catania GA, Aschwanden A, Clow GD, Colgan WT, Price SF (2016) A synthesis of the basal thermal state of the Greenland Ice Sheet. J Geophys Res Earth Surface 121:1328–1350

    Google Scholar 

  • Majorowicz J (2012) Permafrost at the ice base of recent Pleistocene glaciations–inferences from borehole temperature profiles. Bull Geography Phys Geography Ser 5:7–28

    Google Scholar 

  • Majorowicz J, Šafanda J (2008) Heat flow variation with depth in Poland: evidence from equilibrium temperature logs in 2.9-km-deep well Torun-1. Int J Earth Sci 97(2):307–315

    Google Scholar 

  • Majorowicz J, Šafanda J (2015) Effect of postglacial warming seen in high precision temperature log deep into the granites in NE Alberta. Int J Earth Sci 104:1563–1571

    Google Scholar 

  • Majorowicz J, Wybraniec S (2011) New terrestrial heat flow map of Europe after regional paleoclimatic correction application. Int J Earth Sci 100(4):881–887

    Google Scholar 

  • Mareschal JC, Rolandone F, Bienfait G (1999) Heat flow variations in a deep borehole near Sept Iles, Québec, Canada: Paleoclimatic interpretation and implications for regional heat flow estimates. Geophys Res Lett 26(14):2049–2052

    Google Scholar 

  • Marshall SJ, Clark PU (2002) Basal temperature evolution of North American ice sheets and implications for the 100-kyr cycle. Geophys Res Lett 29:1–4

    Google Scholar 

  • Maystrenko YP, Slagstad T, Elvebakk HK, Olesen O, Ganerød GV, Rønning JS (2015) New heat flow data from three boreholes near Bergen, Stavanger and Moss, southern Norway. Geothermics 56:79–92

    Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH (1953) Equations of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Google Scholar 

  • Mörner NA (1979) The Fennoscandian uplift and Late Cenozoic geodynamics: geological evidence. GeoJournal 3:287–318

    Google Scholar 

  • Pickler C, Beltrami H, Mareschal JC (2016) Laurentide ice sheet basal temperatures at the Last Glacial Cycle as inferred from borehole data. Climate of the Past 12(1):115–127

    Google Scholar 

  • Pitkäranta R (2009) Pre-late Weichselian podzol soil, permafrost features and lithostratigraphy at Penttilänkangas, western Finland. Bull Geol Soc Finl 81:53–74

    Google Scholar 

  • Popov YA, Pevzner SL, Pimenov VP, Romushkevich RA (1999) New geothermal data from the Kola superdeepwell SG-3. Tectonophysics 306:345–366

    Google Scholar 

  • Rath V, Mottaghy D (2007) Smooth inversion for ground surface temperature histories: estimating the optimum regularization parameter by generalized cross-validation. Geophys J Int 171:1440–1448

    Google Scholar 

  • Rath V, Sundberg J, Näslund J-O, Liljedahl LC (2019) Paleoclimatic inversion of temperature profiles from deep boreholes at Forsmark and Laxemar. Technical Report TR-18–06, Svensk Kärnbränslehantering AB

  • Rogozhina I, Petrunin AG, Vaughan AP, Steinberger B, Johnson JV, Kaban MK, Koulakov I (2016) Melting at the base of the Greenland ice sheet explained by Iceland hotspot history. Nat Geosci 9:366–369

    Google Scholar 

  • Rolandone F, Mareschal JC, Jaupart C (2003) Temperatures at the base of the Laurentide Ice Sheet inferred from borehole temperature data. Geophys Res Lett 30(18):1–4

    Google Scholar 

  • Rusakov AV, Nikonov AA (2010) Characterization of relict Late Pleistocene and Early Holocene paleosols buried in wedge-shaped structures on the southern coast of the Finnish Gulf. Eurasian Soil Sci 43:737–747

    Google Scholar 

  • Šafanda J, Szewczyk J, Majorowicz J (2004) Geothermal evidence of very low glacial temperatures on a rim of the Fennoscandian ice sheet. Geophys Res Lett 31(7):L07211. https://doi.org/10.1029/2004GL019547

    Article  Google Scholar 

  • Siegert MJ, Dowdeswell JA, Hald M, Svendsen JI (2001) Modelling the Eurasian Ice Sheet through a full (Weichselian) glacial cycle. Global Planet Change 31:367–385

    Google Scholar 

  • Smellie J, Pitkänen P, Koskinen L, Aaltonen I, Eichinger F, Waber N, Poteri A (2014) Evolution of the Olkiluoto Site: Palaeohydrogeochemical Considerations. Working Report

  • Schomacker A, Larsen NK, Bjørk AA, Kjær KH (2017) Temperature observations from northernmost Greenland, 2006–2010. Low Temp Sci 75:85–90

    Google Scholar 

  • Shvarev S, Nikonov A, Rusakov A (2018) Wedge shaped structures in unconsolidated deposits of the Neva lowland as a result of seismic effects in the early Holocene: the Nizino case study. Geomorphology 2:99–114

    Google Scholar 

  • Streletskaya ID (2017) Soil wedge structures in the southern coast of the Finland golf. Kriosfera Zemli 21:3–12

    Google Scholar 

  • Svendsen JI, Alexanderson H, Astakhov VI, Demidov I, Dowdeswell JA, Funder S, Gataullin V, Henriksen M, Hjort C, Houmark-Nielsen M, Hubberten HW, Ingolfsson O, Jakobsson M, Kjer RH, Larsen E, Lokrantz H, Lunkka JP, Lysa A, Mangerud J, Matiouchkov A, Murray A, Moller P, Niessen F, Nikolskaya O, Polyak L, Saarnisto M, Siegertk MJ, Siegert C, Spielhagen RF, Stein R (2004) Late quaternary ice sheet history of northern Eurasia. Quaternary Sci Rev 23:1229–1271

  • Svensson H (1988) Ice-wedge casts and relict polygonal patterns in Scandinavia. J Quat Sci 3:57–67

    Google Scholar 

  • Toropainen V (2012) Core Drilling of Deep Drillhole OL-KR56 at Olkiluoto in Eurajoki 2011–2012. Working Report 2012–52. Posiva Oy:12–33. https://inis.iaea.org/collection/NCLCollectionStore/_Public/44/091/44091490.pdf. Accessed 26 May 2020

  • Van Huissteden K, Vandenberghe J, Pollard D (2003) Palaeotemperature reconstructions of the European permafrost zone during marine oxygen isotope Stage 3 compared with climate model results. J Quat Sci 18:453–464

    Google Scholar 

  • Weertman J (1968) Comparison between measured and theoretical temperature profiles of the Camp Century, Greenland, Borehole. J Geophys Res 73:2691–2700

    Google Scholar 

  • Xing LU (2014) Estimations of undisturbed ground temperatures using numerical and analytical modeling. PhD thesis. Oklahoma State University

Download references

Author information

Authors and Affiliations

Authors

Contributions

DYD initiated and supervised this study. DYD and AAG conducted the investigation. AAG and ANA designed the algorithm and performed the transformation of ground surface temperatures to surface heat fluxes. All the authors contributed to the discussion and interpretations.

Corresponding author

Correspondence to Dmitry Yu Demezhko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demezhko, D.Y., Gornostaeva, A.A. & Antipin, A.N. The Fennoscandian ice sheet during the Late Weichselian: geothermal evidence. Int J Earth Sci (Geol Rundsch) 109, 1941–1955 (2020). https://doi.org/10.1007/s00531-020-01881-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-020-01881-1

Keywords

Navigation