Skip to main content
Log in

Recovering the Shape of a Quantum Graph

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Sturm–Liouville problems on simple connected equilateral graphs of \(\le 5\) vertices and trees of \(\le 8\) vertices are considered with Kirchhoff’s and continuity conditions at the interior vertices and Neumann conditions at the pendant vertices and the same potential on the edges. It is proved that if the spectrum of such problem is unperturbed (such as in case of zero potential) then this spectrum uniquely determines the shape of the graph and the zero potential. This is a generalization of the ’geometric’ Ambarzumian’s theorem of Boman et al. (Integral Equ. Oper. Theory 90:40, 2018. https://doi.org/10.1007/s00020-018-2467-1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ambarzumian, V.A.: Über eine Frage der Eigenwerttheorie. Z. Phys. 53, 690–695 (1929)

    Article  MATH  Google Scholar 

  2. Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs. Math. Surveys, Monographs, textbf186, AMS, Providence RI (2013)

  3. Boman, J., Kurasov, P., Suhr, R.: Schrödinger operators on graphs and geometry II. Spectral estimates for \(L_1\)-potentials and Ambarzumian’s theorem. Integral Equ. Oper. Theory 90, 40 (2018). https://doi.org/10.1007/s00020-018-2467-1

    MATH  Google Scholar 

  4. Borg, G.: Uniqueness theorems in the spectral theory of \( y^{\prime \prime }+(\lambda -q(x))y=0\). In: Proceedings of 11th Scandinavian Congress of Mathematicians, Johan Grundt Tanums Forlag Oslo, pp. 276–287 (1952)

  5. Borg, G.: Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe. Acta Math. 78, 1–96 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  6. Butler, S., Grout, J.: A construction of cospectral graphs for the normalized Laplacian. Electron. J. Comb. 18, 231–232 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carlson, R., Pivovarchik, V.: Ambarzumian’s theorem for trees. Electron. J. Differ. Equ. (2007)

  8. Carlson, R.: Hill’s equation for a homogeneous tree. Electron. J. Differ. Equ. 23, 30 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Carlson, R.: Inverse eigenvalue problems on directed graphs. Trans. Am. Math. Soc. 351(10), 4069–4088 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carlson, R., Pivovarchik, V.: Spectral asymptotics for quantum graphs with equal edge lengths. J. Phys. A: Math. Theor. 41, 145202 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cattaneo, C.: The spectrum of the continuous Laplacian on a graph. Monatsh. Math. 124(3), 215–235 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chakravarty, N.K., Acharaya, S.K.: On an extension of the theorem of V.A. Ambarzumyan. Proc. R. Soc. Edinburg A 110, 79–84 (1988)

    Article  MathSciNet  Google Scholar 

  13. Chern, H.H., Shen, C.L.: On the n-dimensional Ambarzumyan’s theorem. Inverse Probl. 13, 15–18 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chern, H.H., Law, C.K., Wang, H.J.: Corrigendum to: Extensions of Ambarzumyan’s Theorem to general boundary conditions. J. Math. Anal. Appl. 309, 764–768 (2005)

    Article  MathSciNet  Google Scholar 

  15. Chung, F.R.K.: Spectral graph theory. AMS Providence, RI (1997)

    MATH  Google Scholar 

  16. Cvetković, D., Doob, M., Gutman, I., Torgašev, A.: Resent Results in the Theory of Graph Spectra. North Holland, Amsterdam (1988)

  17. Davies, E.B.: An inverse spectral theorem. J. Oper. Theory 69(1), 195–208 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Exner, P.: Weakly coupled states on branching graphs. Lett. Math. Phys. 38, 313–320 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Exner, P.: A duality between Schrödinger operators on graphs and certain Jacobi matrices. Ann. Inst. H. Poincaré, Sec. A 66, 359–371 (1997)

    MATH  Google Scholar 

  20. Exner, P.: Magnetoresonances in a Lasso Graph. Found. Phys. 27, 171–190 (1997)

    Article  MathSciNet  Google Scholar 

  21. Friedman, J., Tillich, J.-P.: Wave equations for graphs and the edge-based Laplacian. Pac. J. Math. 216(2), 229–266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gerasimenko, N.I.: Inverse scattering problem on noncompact graph. Teoreticheskaya i matematicheskaya fisika 75(2), 187–200 (1988). (in Russian)

    MathSciNet  Google Scholar 

  23. Gerasimenko, N.I., Pavlov, B.S.: Scattering problem on noncompact graphs. Teoreticheskaya i matematicheskaya fisika 74(3), 345–359 (1988). (in Russian)

    MathSciNet  MATH  Google Scholar 

  24. Gutkin, B., Smilansky, U.: Can one hear the shape of a graph? J. Phys. A.: Math. Gen. 34, 6061–6068 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Haermers, W.H., Spence, E.: Enumeration of cospectral graphs. Eur. J. Comb. 25, 199–211 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Harmer, M.S.: Inverse scattering for the matrix Schrödinger operator and Schrödinger operator on graphs with general self-adjoint boundary conditions. ANZIAM J. 44, 161–168 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Harrel II, E.M.: On the extension of Ambarzumian’s inverse spectral theorem to compact symmetric spaces. Am. J. Math. 109(5), 787–795 (1987)

    Article  MathSciNet  Google Scholar 

  28. Horváth, M.: On a theorem of Ambarzumyan. Proc. R. Soc. Edinb. A 131, 899–907 (2001)

    Article  MATH  Google Scholar 

  29. Kac, M.: Can one hear the shape of a drum? Am. Math. Monthly 73(II), 1–8 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kiss, M.: Spectral determinants and an Ambarzumian type theorem on graphs. arXiv:1610.0097v2 [math.SP] (2017)

  31. Kiss, M.: Spectral determinants and an Ambarzumian type theorem on graphs. Integr. Equ. Oper. Theory. (2020)

  32. Kiss, M.: An \(n\)-dimensional Ambarzumyan type theorem for Dirac operators. Inverse Probl. 20, 1593–1597 (2004)

    MATH  Google Scholar 

  33. Kurasov, P., Nowaczyk, M.: Inverse spectral problem for quantum graphs. J. Phys. A.: Math. Gen. 38, 4901–4915 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kurasov, P., Stenberg, F.: On the inverse scattering problem on branching graphs. J. Phys. A.: Math. Gen. 35, 101–121 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Law, C.-K., Yanagida, E.: A solution to an Ambarzumyan problem on trees. Kodai Math. J. 35(2), 358–373 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Levitan, B., Gasymov, M.: Determination of a differential equation by two of its spectra (Russian). Russ. Math. Surveys 19(2), 1–64 (1964)

    Article  MATH  Google Scholar 

  37. Marchenko, V.A.: Sturm–Liouville Operators and Applications, OT 22, p. 331. Birkhauser, Basel (1986)

  38. Mehmeti, F.A.: A characterization of generalized \(C^{\infty }\)-notion on nets. Integr. Equ. Oper. Theory 9, 753–766 (1986)

    MathSciNet  MATH  Google Scholar 

  39. Melnikov, Y.B., Pavlov, B.S.: Two-body scattering on a graph and application to simple nanoelectronic devices. J. Math. Phys. 36, 2813–2838 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  40. Möller, M., Pivovarchik, V.: Spectral Theory of Operator Pencils, Hermite–Biehler Functions, and their Applications. OT 264, p. 412. Birkhauser, Basel (2015)

  41. Nicaise, S.: Spectre des re’seaux topoogiques finis. Bull. Sci. Math. 2 Se’rie 111, 401–413 (1987)

  42. Pivovarchik, V.: Ambarzumian’s theorem for the Sturm–Liouville boundary value problem on star-shaped graph. Funktsional. Anal. Prilozh. (Russian), 39 (2005), No. 2, 78–81: English translation in Funct. Anal. Appl. 39, No. 2, 148–151 (2005)

  43. Pivovarchik, V.: Inverse problem for the Sturm–Liouville equation on a simple graph. SIAM J. Math. Anal. 32(4), 801–819 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  44. Pivovarchik, V., Rozhenko, N.: Inverse Sturm–Liouville problem on equilateral regular tree. Appl. Anal. 92(4), 784–798 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pokorny, Y., Penkin, O., Pryadiev, V., Borovskih, A., Lazarev, K., Shabrov, S.: Differential equations on geometric graphs. Fizmatlit (2005) (in Russian)

  46. Shen, C.L.: On some inverse spectral problems related to the Ambarzumyan problem and the dual string of the string equation. Inverse Probl. 23, 2417–2436 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. von Below, J.: A characteristic equation associated to an eigenvalue problem on \(c^2\)-networks. Linear Algebra Appl. 71, 309–325 (1985)

  48. von Below, J.: Can One Hear the Shape of a Network, Partial Differential Equations on Multistructures. Lecture Notes in Pure Mathematics, vol. 219. M. Dekker, NY (2001)

  49. Yang, C.-F., Xu, X.C.: Ambarzumian-type theorems on a graphs with loops and double edges. J. Math. Anal. Appl. 444(2), 1348–1358 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Yang, C.F., Yang, X.P.: Some Ambarzumyan-type theorems for Dirac operators. Inverse Probl. 25, 095012 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  51. Yang, C.-F., Huang, Z.-Y., Yang, X.-P.: Ambarzumian-type theorems for the Sturm–Liouville equation on a graph. Rocky Mt. J. Math. 39(4), 1353–1372 (2009)

    Article  MATH  Google Scholar 

  52. Yang, C.-F., Pivovarchik, V., Huang, Z.-Y.: Ambarzumian-type theorems on a graphs. Oper. Matrices 5(1), 119–131 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Pivovarchik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernyshenko, A., Pivovarchik, V. Recovering the Shape of a Quantum Graph. Integr. Equ. Oper. Theory 92, 23 (2020). https://doi.org/10.1007/s00020-020-02581-w

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-020-02581-w

Keywords

Mathematics Subject Classification

Navigation