Skip to main content

Advertisement

Log in

Scenarios analysis using water-sensitive urban design principles: a case study of the Cape Flats Aquifer in South Africa

Analyse de scénarios à l’aide de principes de conception urbaine sensible à l’eau: étude de cas de l’aquifère de Cape Flats en Afrique du Sud

Análisis de escenarios utilizando los principios de planificación urbana en función del agua: un estudio de caso del acuífero de Cape Flats en Sudáfrica

使用水敏感城市设计原则的情景分析:以南非Cape Flats含水层为例

Análise de cenários usando princípios de design urbano sensíveis à água: um estudo de caso do quífero Cape Flats na África do Sul

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A feasibility assessment was undertaken on the application of water-sensitive urban design (WSUD) for the Cape Flats Aquifer in Cape Town, South Africa, at the local scale. The study contributes towards the planning of water-sensitive cities in the future. A three-dimensional steady-state groundwater flow model was applied to the Cape Flats Aquifer to predict WSUD scenarios by incorporating managed aquifer recharge (MAR). Analysis of the scenarios of varying recharge estimates and groundwater abstraction rates, predicted using the model, indicated that the water-table distribution and outflows from identified groundwater balance components show direct proportionality to the varying recharge scenarios. A notable increase in these outflows was observed when the recharge rate was increased by 50%. Varying groundwater abstraction scenarios indicated that with increasing abstraction rates, water levels and outflows from groundwater balance components also decreased accordingly. A notable decline in water levels and outflows was established at an abstraction rate of 2.5 and 5 L/s, respectively. Similar to the previous regional studies in the area, the results from the predicted scenarios show that there is a potential for applying WSUD, particularly MAR, at site-specific scale within the Cape Flats Aquifer. However, shallow groundwater levels during wet seasons limit the opportunities for application of WSUD in the area. This finding would provide an important reference to the ongoing debate on the Cape Town water crisis and similar environmental conditions where WSUD is considered.

Résumé

Une évaluation de faisabilité a été entreprise à l’échelle locale sur l’application de la conception urbaine sensible à l’eau (Water Sensible Urban Design - WSUD) pour l’aquifère de Cape Flats au Cap, en Afrique du Sud. L’étude contribue à la planification de villes sensibles à l’eau à l’avenir. Un modèle tridimensionnel d’écoulement des eaux souterraines en régime permanent a été appliqué à l’aquifère de Cape Flats pour prédire les scénarios WSUD en incorporant la recharge artificielle de l’aquifère (Managed Aquifer Recharge -MAR).L’analyse des scénarios de différentes estimations de la recharge et des taux de prélèvement des eaux souterraines, prédits à l’aide du modèle, a indiqué que la distribution des niveaux de la nappe et des flux provenant des termes du bilan hydrogéologique montrent une proportionnalité directe avec les différents scénarios de recharge. Une augmentation notable de ces sorties a été observée lorsque le taux de recharge a été augmenté de 50%. Divers scénarios de captage des eaux souterraines ont indiqué qu’avec l’augmentation des débits prélevés, les niveaux d’eau et les flux du bilan hydrogéologique ont également diminué en conséquence. Une baisse notable des niveaux d’eau et des débits sortants a été obtenue avec un débit de prélèvement de 2.5 et 5 L/s, respectivement. À l’instar des études régionales précédentes dans la région, les résultats des scénarios du modèle montrent qu’il existe un potentiel d’application du WSUD, en particulier du MAR, à l’échelle du site, dans l’aquifère de Cape Flats. Cependant, les niveaux d’eau souterraine peu profonds pendant les saisons humides limitent les possibilités d’application du WSUD dans la région. Cette constatation pourrait fournir une référence importante au débat en cours sur la crise de l’eau au Cap et les conditions environnementales similaires où le WSUD est envisagé.

Resumen

Se llevó a cabo una evaluación de la factibilidad de la aplicación de un diseño urbano adaptado al agua (WSUD) a escala local para el acuífero de Cape Flats en Ciudad del Cabo (Sudáfrica). El estudio contribuye a la planificación de las ciudades que sean sensibles al agua en el futuro. Se aplicó un modelo tridimensional de flujo de aguas subterráneas en estado estacionario en el Acuífero de Cape Flats para predecir escenarios de WSUD incorporando la recarga gestionada del acuífero (MAR). El análisis de los escenarios de las distintas estimaciones de recarga y las tasas de extracción de aguas subterráneas, pronosticadas mediante el modelo, indicaron que la distribución del nivel freático y los flujos de salida de los componentes del balance de aguas subterráneas identificados muestran una proporcionalidad directa con los distintos escenarios de recarga. Se observó un notable aumento de esos flujos de salida cuando la tasa de recarga se incrementó en un 50%. Los diversos escenarios de extracción de aguas subterráneas indicaban que al aumentar las tasas de extracción, los niveles de agua y las salidas de los componentes del equilibrio de las aguas subterráneas en consecuencia también disminuían. Se estableció una notable disminución de los niveles de agua y de las salidas a una tasa de extracción de 2.5 y 5 L/s, respectivamente. Al igual que en los anteriores estudios regionales en la zona, los resultados de los escenarios previstos muestran que existe la posibilidad de aplicar la WSUD, en particular el MAR, a escala local en el acuífero de Cape Flats. Sin embargo, los niveles poco profundos de las aguas subterráneas durante las estaciones húmedas limitan las posibilidades de aplicación de la WSUD en la zona. Este resultado proporcionaría una importante referencia al debate en curso sobre la crisis del agua de Ciudad del Cabo y las condiciones ambientales similares en las que se considera la WSUD.

摘要

在小尺度上,将水敏感城市设计(WSUD)应用于南非开普敦镇Cape Flats含水层的可行性评估。该研究有助于对水敏感城市的未来规划。将三维稳定地下水流模型应用到 Cape Flats含水层中,通过集成含水层人工补给(MAR)来预测WSUD情景。基于模型预测,变化的补给量估计和地下水开采量的情景分析表明,潜水位分布和已识别的地下水均衡项中的流出量与变化的补给情景成正比。当补给率提高50%时,这些流出量呈显著增加。各种不同的地下水开采方案表明,随着开采量的增加,地下水位均衡项中的水位和流出量也相应减少。分别以2.5和5 L/s的开采量时发现水位和流出量显著地下降。与该地区以前的区域研究相似,预测情景的结果表明,在Cape Flats含水层中,有可能在特定场地尺度上应用WSUD,尤其是MAR。但是,在雨季地下水位很浅,限制了该地区应用WSUD的机会。这一发现将为正在进行的关于开普敦水危机和考虑WSUD的类似环境条件的解释提供重要参考。

Resumo

Foi realizada uma avaliação de viabilidade sobre a aplicação do design urbano sensível à água (DUSA) para o aquífero Cape Flats na Cidade do Cabo, na África do Sul, em escala local. O estudo contribui para o planejamento de cidades sensíveis à água no futuro. Um modelo tridimensional de fluxo de águas subterrâneas em estado estacionário foi aplicado ao Aquífero de Cape Flats para prever cenários de DUSA, incorporando a recarga de aquíferos gerenciada (RAG). A análise dos cenários de diferentes estimativas de recarga e taxas de captação de água subterrânea, previstas usando o modelo, indicou que a distribuição e vazões de lençol freático dos componentes identificados do balanço de águas subterrâneas mostram proporcionalidade direta aos diferentes cenários de recarga. Um aumento notável dessas saídas foi observado quando a taxa de recarga foi aumentada em 50%. Cenários variáveis ​​de captação de água subterrânea indicaram que, com o aumento das taxas de captação, os níveis e vazões de água dos componentes do equilíbrio da água subterrânea também diminuíram de acordo. Um declínio notável nos níveis e vazões de água foi estabelecido a uma taxa de captação de 2.5 e 5 L/s, respectivamente. Semelhante aos estudos regionais anteriores na área, os resultados dos cenários previstos mostram que existe um potencial para aplicar o DUSA, particularmente a RGA, em escala específica do local no Aquífero de Cape Flats. No entanto, os níveis de águas subterrâneas rasas durante as estações chuvosas limitam as oportunidades de aplicação do DUSA na área. Essa constatação forneceria uma referência importante ao debate em andamento sobre a crise da água na Cidade do Cabo e condições ambientais similares em que o DUSA é considerado.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adelana S (2010) Groundwater resource evaluation and protection in the Cape Flats, South Africa. PhD Thesis, University of the Western Cape, Cape Town, South Africa

  • Adelana S, Xu Y, Vrbka P (2010) A conceptual model for the development and management of cape flats aquifer. Water SA 36(4)

  • Ahjum F, Hughes A, Fant C (2015) Climate, land, energy and water strategies in the City of Cape Town. Report, University of Cape Town, Cape Town, South Africa

  • Anderson MP, Woessner WW (2002) Applied groundwater modelling: simulation of flow and advective transport. Academic, San Diego

  • Anderson MP, Woessner WW, Hunt RJ (2015) Applied groundwater modelling: simulation of flow and advective transport, 2nd edn. Academic, San Diego

  • Armitage N, Fisher-Jeffes L, Carden K, Winter K, Naidoo V, Spiegel A, Mauck B, Coulson D (2014) Water sensitive urban design (WSUD) for South Africa: framework and guidelines. WRC Report no. TT 588/14, Water Research Commission, Pretoria, South Africa

  • Carden K, Armitage N, Fisher-Jeffes L, Winter K, Mauck B, Sanya T, Bhika P, Mallett G, Kanyerere T, Gxokwe S (2017) A feasibility study to evaluate the potential of using water sensitive design to strengthen planning for water sensitive cities of the future. WRC report no. K5/2412, Water Research Commission, Pretoria, South Africa

  • City of Cape Town (2007) Long term water conservation and water demand management strategy. WC/WDM Report (April 07), City of Cape Town, Cape Town, South Africa

  • City of Cape Town (2018) Water outlook 2018 report. https://resource.capetown.gov.za/documentcentre/Documents/City%20research%20reports%20and%20review/Water%20Outlook%202018%20-%20Summary.pdf. Accessed 25 June 2018

  • DWAF (2008) The assessment of water availability in the Berg catchment (WMA 19) by means of water resource related models: groundwater model report, vol 5—Cape Flats Aquifer Model. Report no. P WMA 19/000/00/0408, Department of Water Affairs and Forestry, Pretoria, South Aftrica

  • Fisher-Jaffes L, Carden K, Armitage N (2017) Water sensitive urban design frame work for South Africa. University of the Free State. Journals.ufs.ac.za/index.php/trp/article/view/3320. Accessed 5 November 2019

  • Gxokwe S (2018) Conceptualization of urban hydrogeology within the context of water sensitive urban design: case study of the Cape Flats Aquifer. MSc Thesis, University of the Western Cape, Cape Town, South Africa

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99

    Article  Google Scholar 

  • Hartnady C, Rogers J (1990) The scenery and geology of the Cape Peninsular guidebook. Geocongress ‘90 Geological Society South Africa, Cape Town, South Africa, July 1990

  • Hay R et al (2015) Cape Flats Aquifer and opportunities to change. https://www.imesa.org.za/wp-content/uploads/2015/11/Paper-16. Accessed 05 November 2019

  • Lerner DN (2002) Identifying and quantifying urban recharge: review. Hydrogeol J 10:143–152

    Article  Google Scholar 

  • Lottering N, du Plessis D, Donaldson R (2015) Coping with drought: the experience of water sensitive urban design in the George municipality. Water SA 41(1):1–7

    Article  Google Scholar 

  • Maclear LGA (1995) Cape Town needs groundwater: a note on the potential of the Cape Flats Aquifer unit to supply groundwater for domestic use in the Cape Town Metropolitan area, Cape Town. Geohydrology Directorate, Department of Water Affairs and Forestry report no. Gh3868, DWAF, Pretoria, South Africa

  • Mauck B (2017) The capacity of the Cape Flats Aquifer and its role in water sensitive urban design. PhD Thesis, University of Cape Town, Cape Town, South Africa

  • Meerkotter M (2012) Sources of heavy metals in vegetables in Cape Town, and possible methods of remediation. PhD Thesis, University of the Western Cape, Cape Town, South Africa

  • Rohr HE (2012) Water sensitive planning: an integrated approach towards sustainable urban water systems planning in South Africa. Masters Thesis, University of North West, Potchefstroom, South Africa

  • Saayman IC, Adams S (2002) The use of garden boreholes in Cape Town, South Africa: lessons learnt from Perth, Western Australia. Phys Chem Earth 27(11–22):961–967

    Article  Google Scholar 

  • Scheepers R, Schoch AE (2006) The Cape Granite suite. In: Johnson MR, Anhaeusser CR, Thomas RJ (ed) The geology of South Africa, 1st edn. CTP, Cape Town, South Africa, pp 421–432

  • Seyler H, Bollaert M, Witthüser K (2016) Regional water sensitive design scenario planning for Cape Town using urban geohydrology model. WRC report no. TT 708/16, Water Research Commission, Pretoria, South Africa

  • Stats SA (Statistics South Africa) (2011) Statistics by place, population census, census 2011, Western Cape. http://www.statssa.gov.za/?page_id=964. Accessed 4 January 2018

  • Theron JN, Gesse PG, Siegfried HP, Rogers J (1992) The geology of the Cape Town area. Explanation on sheet 3318, Geological Survey, South Africa, Johannesburg, South Africa, 140 pp

  • Tredoux G, Ross W, Gerber A (1980) The potential of the cape flats aquifer for the storage and abstraction of reclaimed effluents. Zeitshr dt geol Gessell 131(2):1–25

    Google Scholar 

  • USGS (2019) EarthExplore. https://earthexplorer.usgs.gov. Accessed 26 May 2019

  • Vandoolaeghe M (1990) The Cape Flats Aquifer. Directorate Geohydrology technical report no. Gh3687, DWA, Pretoria, South Africa

  • Ward S, Lundy L, Shaffer P, Wong T, Ashley R, Arthur S, Armitage NP, Walker L, Brown R, Deletic A Buttler D (2012) Water sensitive urban design in the city of the future. http://hdl.handle.net/10036/4288. Accessed 5 November 2019

  • Winston RB (2009) ModelMuse: a graphical user interface for MODFLOW: 2005 and PHAST. US Geol Surv Tech Methods 6-A29. http//pubs.usgs.gov/tm/tm6A2. Accessed 1 May 2019

  • Wong TFH (2006) Water sensitive urban design-journey thus far. Australasian J Water Resour 10(3):213–232

    Article  Google Scholar 

  • Xu Y, Beekman HE (2003) Groundwater recharge estimation in Southern Africa. UNESCO IHP, Paris

  • Yang N, Soraya M (2013) Water by design: a shifting paradigm in urban built environment. Proceedings of the SB 13 Singapore—Realising Sustainability in the Tropics, Singapore, 2013

  • Zhou Y, Li W (2011) A review of regional groundwater flow modelling. Geosci Front 2(2):205–214

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express gratitude to the anonymous reviewers for their valuable input to this report. The authors would also like to thank the collaborative partners from the University of Cape Town (UCT) Department of Civil Engineering, Council for Scientific and Industrial Research (CSIR), as well as Department of Water and Sanitation (DWS), for project formulation and assistance with secondary data. Finally, the authors would like to thank Dr. Richard Winston for ModelMuse software provision and introduction, Dr. Sumaya Israel, Ms. Zanele Ntshidi, and Mr. Bhongolethu Mtengwana for their input.

Funding

This project was funded by the Water Research Commission (WRC) of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxin Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gxokwe, S., Xu, Y. & Kanyerere, T. Scenarios analysis using water-sensitive urban design principles: a case study of the Cape Flats Aquifer in South Africa. Hydrogeol J 28, 2009–2023 (2020). https://doi.org/10.1007/s10040-020-02188-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02188-w

Keywords

Navigation