Skip to main content
Log in

Mechanical responses of pristine and defective hexagonal boron-nitride nanosheets: A molecular dynamics investigation

  • Research Article
  • Published:
Frontiers of Structural and Civil Engineering Aims and scope Submit manuscript

Abstract

In this work we conducted classical molecular dynamics (MD) simulation to investigate the mechanical characteristics and failure mechanism of hexagonal boron-nitride (h-BN) nanosheets. Pristine and defective structure of h-BN nanosheets were considered under the uniaxial tensile loadings at various temperatures. The defective structure contains three types of the most common initial defects in engineering materials that are known as cracks, notches (with various length/size), and point vacancy defects (with a wide range of concentration). MD simulation results demonstrate a high load-bearing capacity of extremely defective (amorphized) h-BN nanosheets. Our results also reveal that the tensile strength decline by increasing the defect content and temperature as well. Our MD results provide a comprehensive and useful vision concerning the mechanical properties of h-BN nanosheets with/without defects, which is very critical for the designing of nanodevices exploiting the exceptional physics of h-BN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191

    Google Scholar 

  2. Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451–10453

    Google Scholar 

  3. Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 2013, 7(4): 2898–2926

    Google Scholar 

  4. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nature Nanotechnology, 2011, 6(3): 147–150

    Google Scholar 

  5. Lynch R W, Drickamer H G. Effect of high pressure on the lattice parameters of diamond, graphite, and hexagonal boron nitride. Journal of Chemical Physics, 1966, 44(1): 181–184

    Google Scholar 

  6. Watanabe K, Taniguchi T, Kanda H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature Materials, 2004, 3(6): 404–409

    Google Scholar 

  7. Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C, Zhi C. Boron nitride nanotubes and nanosheets. ACS Nano, 2010, 4(6): 2979–2993

    Google Scholar 

  8. Mortazavi B, Pereira L F C, Jiang J W, Rabczuk T. Modelling heat conduction in polycrystalline hexagonal boron-nitride films. Scientific Reports, 2015, 5(1): 13228

    Google Scholar 

  9. Mortazavi B, Cuniberti G. Mechanical properties of polycrystalline boron-nitride nanosheets. RSC Advances, 2014, 4(37): 19137–19143

    Google Scholar 

  10. Li L H, Cervenka J, Watanabe K, Taniguchi T, Chen Y. Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano, 2014, 8(2): 1457–1462

    Google Scholar 

  11. Zhou H, Zhu J, Liu Z, Yan Z, Fan X, Lin J, Wang G, Yan Q, Yu T, Ajayan P M, Tour J M. High thermal conductivity of suspended few-layer hexagonal boron nitride sheets. Nano Research, 2014, 7(8): 1232–1240

    Google Scholar 

  12. Kumar R, Rajasekaran G, Parashar A. Optimised cut-off function for Tersoff-like potentials for a BN nanosheet: A molecular dynamics study. Nanotechnology, 2016, 27(8): 085706

    Google Scholar 

  13. Wang J, Ma F, Sun M. Graphene, hexagonal boron nitride, and their heterostructures: Properties and applications. RSC Advances, 2017, 7(27): 16801–16822

    Google Scholar 

  14. Yin J, Li J, Hang Y, Yu J, Tai G, Li X, Zhang Z, Guo W. Boron nitride nanostructures: Fabrication, functionalization and applications. Small, 2016, 12(22): 2942–2968

    Google Scholar 

  15. Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg K P, Babakhani A, Idrobo J C, Vajtai R, Lou J, Ajayan P M. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nature Nanotechnology, 2013, 8(2): 119–124

    Google Scholar 

  16. Rubio A, Corkill J L, Cohen M L. Theory of graphitic boron nitride nanotubes. Physical Review B: Condensed Matter, 1994, 49(7): 5081–5084

    Google Scholar 

  17. Cresti A, Nemec N, Biel B, Niebler G, Triozon F, Cuniberti G, Roche S. Charge transport in disordered graphene-based low dimensional materials. Nano Research, 2008, 1(5): 361–394

    Google Scholar 

  18. Banhart F, Kotakoski J, Krasheninnikov AV. Structural defects in graphene. ACS Nano, 2011, 5(1): 26–41

    Google Scholar 

  19. Boukhvalov D W, Katsnelson M I. Chemical functionalization of graphene with defects. Nano Letters, 2008, 8(12): 4373–4379

    Google Scholar 

  20. Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S. Direct evidence for atomic defects in graphene layers. Nature, 2004, 430(7002): 870–873

    Google Scholar 

  21. Meyer J C, Kisielowski C, Erni R, Rossell M D, Crommie M F, Zettl A. Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Letters, 2008, 8(11): 3582–3586

    Google Scholar 

  22. Kotakoski J, Krasheninnikov A V, Nordlund K. Energetics, structure, and long-range interaction of vacancy-type defects in carbon nanotubes: Atomistic simulations. Physical Review B: Condensed Matter and Materials Physics, 2006, 74(24): 245420

    Google Scholar 

  23. Ma J, Alfé D, Michaelides A, Wang E. Stone-Wales defects in graphene and other planar sp2-bonded materials. Physical Review B: Condensed Matter and Materials Physics, 2009, 80(3): 033407

    Google Scholar 

  24. Mortazavi B, Cuniberti G. Atomistic modeling of mechanical properties of polycrystalline graphene. Nanotechnology, 2014, 25(21): 215704

    Google Scholar 

  25. Mortazavi B, Pötschke M, Cuniberti G. Multiscale modeling of thermal conductivity of polycrystalline graphene sheets. Nanoscale, 2014, 6(6): 3344–3352

    Google Scholar 

  26. Lee C, Wei X, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385–388

    Google Scholar 

  27. Bourrellier R, Meuret S, Tararan A, Stéphan O, Kociak M, Tizei L H G, Zobelli A. Bright UV Single photon emission at point defects in h-BN. Nano Letters, 2016, 16(7): 4317–4321

    Google Scholar 

  28. Salavati M, Ghasemi H, Rabczuk T. Electromechanical properties of Boron Nitride Nanotube: Atomistic bond potential and equivalent mechanical energy approach. Computational Materials Science, 2018, 149: 460–465

    Google Scholar 

  29. Salavati M, Rabczuk T. Application of highly stretchable and conductive two-dimensional 1T VS2 and VSe2 as anode materials for Li-, Na- and Ca-ion storage. Computational Materials Science, 2019, 160: 360–367

    Google Scholar 

  30. Salavati M. Electronic and mechanical responses of two-dimensional HfS2, HfSe2, ZrS2, and ZrSe2 from first-principles. Frontiers of Structural and Civil Engineering, 2019, 13(2): 486–494

    Google Scholar 

  31. Katzir A, Suss J T, Zunger A, Halperin A. Point defects in hexagonal boron nitride. I. EPR, thermoluminescence, and thermally-stimulated-current measurements. Physical Review B, 1975, 11(6): 2370–2377

    Google Scholar 

  32. Jiménez I, Jankowski A F, Terminello L J, Sutherland D G J, Carlisle J A, Doll G L, Tong W M, Shuh D K, Himpsel F J. Core-level photoabsorption study of defects and metastable bonding configurations in boron nitride. Physical Review B: Condensed Matter, 1997, 55(18): 12025–12037

    Google Scholar 

  33. Hirano S I, Yogo T, Asada S, Naka S. Synthesis of amorphous boron nitride by pressure pyrolysis of borazine. Journal of the American Ceramic Society, 1989, 72(1): 66–70

    Google Scholar 

  34. Taniguchi T, Kimoto K, Tansho M, Horiuchi S, Yamaoka S. Phase transformation of amorphous boron nitride under high pressure. Chemistry of Materials, 2003, 15(14): 2744–2751

    Google Scholar 

  35. Mortazavi B, Ahzi S. Thermal conductivity and tensile response of defective graphene: A molecular dynamics study. Carbon N. Y., 2013, 63: 460–470

    Google Scholar 

  36. Ding N, Chen X, Wu C M L. Mechanical properties and failure behaviors of the interface of hybrid graphene/hexagonal boron nitride sheets. Scientific Reports, 2016, 6(1): 31499

    Google Scholar 

  37. Güryel S, Hajgató B, Dauphin Y, Blairon J M, Edouard Miltner H, De Proft F, Geerlings P, Van Lier G. Effect of structural defects and chemical functionalisation on the intrinsic mechanical properties of graphene. Physical Chemistry Chemical Physics, 2013, 15(2): 659–665

    Google Scholar 

  38. Han T, Luo Y, Wang C. Effects of temperature and strain rate on the mechanical properties of hexagonal boron nitride nanosheets. Journal of Physics D, Applied Physics, 2014, 47(2): 025303

    Google Scholar 

  39. Abadi R, Uma R P, Izadifar M, Rabczuk T. Investigation of crack propagation and existing notch on the mechanical response of polycrystalline hexagonal boron-nitride nanosheets. Computational Materials Science, 2017, 131: 86–99

    Google Scholar 

  40. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995, 117(1): 1–19

    MATH  Google Scholar 

  41. Matsunaga K, Fisher C, Matsubara H. Tersoff potential parameters for simulating cubic boron carbonitrides. Japanese Journal of Applied Physics, 2000, 39: 48–51

    Google Scholar 

  42. Martyna G J, Klein M L, Tuckerman M. Nosé-Hoover chains: The canonical ensemble via continuous dynamics. The Journal of chemical physics, 1992, 97(4): 2635–3643

    Google Scholar 

  43. Cheng A, Merz K M. Application of the Nosé-Hoover chain algorithm to the study of protein dynamics. Journal of Physical Chemistry, 1996, 100(5): 1927–1937

    Google Scholar 

  44. Nosé S. A unified formulation of the constant temperature molecular dynamics methods. Journal of Chemical Physics, 1984, 81(1): 511–519

    Google Scholar 

  45. Hoover W G. Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 1985, 31(3): 1695–1697

    Google Scholar 

  46. Mortazavi B, Cuniberti G, Rabczuk T. Mechanical properties and thermal conductivity of graphitic carbon nitride: A molecular dynamics study. Computational Materials Science, 2015, 99: 285–289

    Google Scholar 

  47. Mortazavi B, Makaremi M, Shahrokhi M, Raeisi M, Singh C V, Rabczuk T, Pereira L F C. Borophene hydride: A stiff 2D material with high thermal conductivity and attractive optical and electronic properties. Nanoscale, 2018, 10(8): 3759–3768

    Google Scholar 

  48. Mortazavi B, Makaremi M, Shahrokhi M, Fan Z, Rabczuk T. N-graphdiyne two-dimensional nanomaterials: Semiconductors with low thermal conductivity and high stretchability. Carbon N. Y., 2018, 137: 57–67

    Google Scholar 

  49. Mortazavi B, Madjet M E, Shahrokhi M, Ahzi S, Zhuang X, Rabczuk T. Nanoporous graphene: A 2D semiconductor with anisotropic mechanical, optical and thermal conduction properties. Carbon N. Y., 2019, 147: 377–384

    Google Scholar 

  50. Mortazavi B, Benzerara O, Meyer H, Bardon J, Ahzi S. Combined molecular dynamics-finite element multiscale modeling of thermal conduction in graphene epoxy nanocomposites. Carbon N. Y., 2013, 60: 356–365

    Google Scholar 

  51. Mortazavi B, Rabczuk T. Multiscale modeling of heat conduction in graphene laminates. Carbon N. Y., 2015, 85: 1–7

    Google Scholar 

  52. Mortazavi B, Shahrokhi M, Zhuang X, Rabczuk T. Borongraphdiyne: A superstretchable semiconductor with low thermal conductivity and ultrahigh capacity for Li, Na and Ca ion storage. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2018, 6(23): 11022–11036

    Google Scholar 

  53. Mortazavi B, Rémond Y, Ahzi S, Toniazzo V. Thickness and chirality effects on tensile behavior of few-layer graphene by molecular dynamics simulations. Computational Materials Science, 2012, 53(1): 298–302

    Google Scholar 

  54. Subramaniyan A K, Sun C T. Continuum interpretation of virial stress in molecular simulations. International Journal of Solids and Structures, 2008, 45(14-15): 4340–4346

    MATH  Google Scholar 

  55. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012

    Google Scholar 

  56. Guo H, Zhuang X, Rabczuk T. A deep collocation method for the bending analysis of Kirchhoff plate. Computers, Materials & Continua, 2019, 59(2): 433–456

    Google Scholar 

  57. Anitescu C, Atroshchenko E, Alajlan N, Rabczuk T. Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials & Continua, 2019, 59(1): 345–359

    Google Scholar 

  58. Rabczuk T, Ren H, Zhuang X. A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem. Computers, Materials & Continua, 2019, 59(1): 31–55

    Google Scholar 

  59. Varshni Y P. Temperature dependence of the elastic constants. Physical Review B, 1970, 2(10): 3952–3958

    Google Scholar 

  60. Ziman J M. Electrons and Phonons: The Theory of Transport Phenomena in Solids. Clarendon Press, 2001

  61. Ziman J M. Electrons and Phonons. Oxford: Oxford University Press, 2001

    MATH  Google Scholar 

  62. Liu F, Ming P, Li J. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Physical Review B: Condensed Matter and Materials Physics, 2007, 76(6): 064120

    Google Scholar 

  63. Shirazi A H N. Molecular dynamics investigation of mechanical properties of single-layer phagraphene. Frontiers of Structural and Civil Engineering, 2019, 13(2): 495–503

    Google Scholar 

  64. Shirazi A H N, Abadi R, Izadifar M, Alajlan N, Rabczuk T. Mechanical responses of pristine and defective C3N nanosheets studied by molecular dynamics simulations. Computational Materials Science, 2018, 147: 316–321

    Google Scholar 

  65. Mortazavi B. Ultra high stiffness and thermal conductivity of graphene like C3N. Carbon N. Y., 2017, 118: 25–34

    Google Scholar 

  66. Mortazavi B, Fan Z, Pereira L F C, Harju A, Rabczuk T. Amorphized graphene: A stiff material with low thermal conductivity. Carbon N. Y., 2016, 103: 318–326

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Salavati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salavati, M., Mojahedin, A. & Shirazi, A.H.N. Mechanical responses of pristine and defective hexagonal boron-nitride nanosheets: A molecular dynamics investigation. Front. Struct. Civ. Eng. 14, 623–631 (2020). https://doi.org/10.1007/s11709-020-0616-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11709-020-0616-5

Keywords

Navigation