Skip to main content
Log in

Kinetics of Chemical Processes in the Human Brain. Proton Blockade of Acetylcholinesterase and pH-Impulse in the Mechanism of Functioning of the Cholinergic Synapse

  • BIOCHEMISTRY, BIOPHYSICS, AND MOLECULAR BIOLOGY
  • Published:
Doklady Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

A kinetic model describing the dynamics of synaptic “discharge” taking into account the kinetics of the injection of the neurotransmitter into the synaptic cleft, the pH-dependence of the catalytic activity of the enzyme, and diffusion withdrawal of protons is proposed. The model provides a physicochemical explanation for a number of important physiological phenomena, such as the neuromuscular paralysis, the molecular mechanism of neurological memory, and the effect of some neurotoxins and drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Varfolomeev, S.D., Semenova, N.A., Bykov, V.I., et al., Kinetics of chemical processes in the human brain. Modeling of the BOLD-signal at f-MRT research, Dokl. Akad. Nauk, 2019, vol. 488, no. 2, pp. 39–43.

    Google Scholar 

  2. Varfolomeev, S.D., Semenova, N.A., Ublinskiy, M.V., et al., fMRI and MR-spectroscopy in research on triggering and autostabilization of N-acetylaspartate, Chem. Phys. Lett., 2019, vol. 729, pp. 84–91.

    Article  CAS  Google Scholar 

  3. Sergeev, P.V., Shimanovskii, N.L., and Petrov, V.N., Retseptory fiziologicheski aktivnykh veshchestv (Receptors of Physiologically Active Compounds), 2nd ed., Volgograd: Sem’ Vetrov; 1999.

  4. Rozengart, E.V., Basova, N.E., Moralev, S.N., et al., Research on cholinesterases in the Soviet Union and Russia: a historical perspective, Chem.-Biol. Interact., 2013, vol. 203, no. 1, pp. 3–9.

    Article  CAS  Google Scholar 

  5. Rosenberry, T.L., Mallender, W.D., Thomas, P.J., et al., A steric blockade model for inhibition of acetylcholinesterase by peripheral site ligands and substrate, Chem.-Biol. Interact., 1999, vol. 119–120, pp. 85–97.

    Article  Google Scholar 

  6. Hasselmo, M.E., The role of acetylcholine in learning and memory, Curr. Opin. Neurobiol., 2006, vol. 16, no. 6, pp. 710–715.

    Article  CAS  Google Scholar 

  7. Titov, S.A., Neurochemical bases of memory, in Neirokhimiya (Neurochemistry), Ashmarin, I.P., Stukalov, P.V., and Eshchenko, N.D., Eds., Moscow: Inst. Biomed. Khim. Ross. Akad. Med. Nauk, 1996, pp. 370–414.

    Google Scholar 

  8. Lushchekina, S.V., Schopfer, L.M., Grigorenko, B.L., et al., Optimization of cholinesterase-based catalytic bioscavengers against organophosphorus agents, Front. Pharmacol., 2018, vol. 9, no. 211, pp. 1–13.

    Article  Google Scholar 

  9. Nemukhin, A.V., Kulakova, A.M., Lushchekina, S.V., et al., Simulation of chemical reactions in the active centers of cholinesterase by quantum theory methods, Vestn. Mosk. Univ., Ser. 2:Khim., 2015, vol. 56, no. 6, pp. 343–347.

    CAS  Google Scholar 

  10. Nemukhin, A.V., Grigorenko, B.L., Morozov, D.I., et al., On quantum mechanical-molecular mechanical (QM/MM) approaches to model hydrolysis of acetylcholine by acetylcholinesterase, Chem.-Biol. Interact., 2013, vol. 203, no. 1, pp. 51–56.

    Article  CAS  Google Scholar 

  11. Lushchekina, S., Gubaydullina, A., Polomskih, V., et al., QM/MM of ChE-catalyzed reactions with special attention to OP inhibition, FEBS J., 2013, vol. 280, suppl. 1, pp. 164–174.

    Google Scholar 

  12. Reed, M.C., Lieb, A., and Nijhout, H.F., The biological significance of substrate inhibition: a mechanism with diverse functions, BioEssays, 2010, vol. 32, pp. 422–429.

    Article  CAS  Google Scholar 

  13. Tai, K., Bond, S.D., MacMillan, H.R., et al., Finite element simulations of acetylcholine diffusion in neuromuscular junctions, Biophys. J., 2003, vol. 84, no. 4, pp. 2234–2241.

    Article  CAS  Google Scholar 

  14. Aidoo, A. and Ward, K., Spatio-temporal concentration of acetylcholine in vertebrate synaptic cleft, Math. Comp. Model., 2006, vol. 44, pp. 952–962.

    Article  Google Scholar 

  15. Middendorf, H.D., Di Cola, D., Cavatorta, F., et al., Water dynamics in charged and uncharged polysaccharide gels by quasi-elastic neutron scattering, Biophys. Chem., 1994, vol. 47, pp. 145–153.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 18-13-00030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Bykov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varfolomeev, S.D., Bykov, V.I. & Tsybenova, S.B. Kinetics of Chemical Processes in the Human Brain. Proton Blockade of Acetylcholinesterase and pH-Impulse in the Mechanism of Functioning of the Cholinergic Synapse. Dokl Biochem Biophys 491, 85–88 (2020). https://doi.org/10.1134/S1607672920020155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1607672920020155

Keywords:

Navigation