Skip to main content
Log in

The effect of wetting and drying cycles on the swelling-shrinkage behavior of the expansive soils improved by nanosilica and industrial waste

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The expansive clayey soils show swelling-shrinkage behavior in wetting and drying cycles, respectively. The seasonal water content variations cause large volume changes of expansive clays, and consequently great losses on the infrastructure. In this study, the swelling-shrinkage behavior of a natural severely expansive clay was verified in its natural state and after being improved by nanosilica and industrial waste. Firstly, the swelling potential of the natural soil was determined, and then improvement impacts of different combinations of the stabilizers on the swelling potential were assessed by means of odometer tests. The results indicated that the swelling potential of 1-day-cured samples containing 0.5% of nanosilica decreased from an initial value of 75.26% for the natural expansive clay to 58.1%. The improvement by means of 0.5% of nanosilica and 20% of electric-arc furnace (EAF) slag decreased the swelling potential from an initial value of 75.26% for the natural expansive clay to 17.11%. Afterwards, the wetting and drying cycles’ effects on the swelling and shrinkage of the natural soil and that of the best identified combination of additives were verified by means of a modified odometer. The measurement of the axial deformation of soil, water content, void ratio, and saturation ratio during the swelling-shrinkage cycles indicated that the wetting and drying cycles caused the reduction of swelling potential of both natural and improved expansive soil samples. It was observed that the equilibrium condition occurred in lower number of wetting and drying cycles for the improved sample, compared to that of the natural soil. In addition, for the untreated samples, the highest void ratio and deformation variations occurred at saturation degrees between 50 and 90%. However, for improved soil sample, the highest void ratio and deformation variations were recorded at saturation degrees between 70 and 90%. In comparison with untreated expansive soil, occurring the highest void ratio and deformation variations at the higher saturation ratio reflected the reduction of negative effects of water content variations on volume changes when the expansive soil samples were improved. Based on the experiments performed on both the untreated and treated samples using the scanning electron microscope (SEM) and X-ray diffraction (XRD) tests before and after wetting and drying cycles, it was concluded that the additives used in the study decreased not only the swelling potential of highly expansive soil samples but also the swelling-shrinkage behavior of the soil. Additionally, it increased the durability of the samples during wetting and drying cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aldaood A, Bouasker M, Al-Mukhtar M (2014) Geotechnical properties of lime-treated gypseous soils. Appl Clay Sci 88:39–48

    Article  Google Scholar 

  • Al-Homoud AS, Basma AA, Husein Malkawi AI, Al-Bashabsheh MA (1995) Cyclic swelling behavior of clays. J Geotech Eng 121(7):562–565

    Article  Google Scholar 

  • Al-Mukhtar M, Lasledj A, Alcover JF (2010) Behavior and mineralogy changes in lime-treated expansive soil at 20 °C. Appl Clay Sci 50:191–198

    Article  Google Scholar 

  • Ashango AA, Patra NR (2016) Behavior of expansive soil treated with steel slag, rice husk ash, and lime. 2016. J Mater Civ Eng 28(7):06016008

    Article  Google Scholar 

  • Bahmani SH, Huat BK, Asadi A, Farzadnia N (2014) Stabilization of residual soil using SiO2 nanoparticles and cement. Constr Build Mater 64:350–359

    Article  Google Scholar 

  • Basma AA, Al-Homoud SA, Malkavi H, Al-Bashabshah MA (1996) Swelling–shrinkage behavior of natural expansive clays. Appl Clay Sci 11:211–227

    Article  Google Scholar 

  • Bell FG (2000) Engineering properties of soils and rocks. Butterwerth-Heinemann Ltd., Woburn

    Google Scholar 

  • Changizi F, Haddad A (2017) Improving the geotechnical properties of soft clay with nano-silica particles. Proc Inst Civ Eng Ground Improv 170(2):62–71

    Article  Google Scholar 

  • Chu, T. Y. and Mou, C. H. 1973.Volume change characteristics of expansive soils determined by controlled suction. In: Proceedings of the 3rd international conference on expansive soils, Haifa, pp.177–185

  • Estabragh AR, Moghadas M, Javadi AA (2013) Effect of different types of wetting fluids on the behavior of expansive soil during wetting and drying. Soils Found 53(5):617–627

    Article  Google Scholar 

  • Estabragh AR, Parsaei B, Javadi AA (2015) Laboratory investigation of the effect of cyclic wetting and drying on the behavior of an expansive soil. Soils Found 55(2):304–314

    Article  Google Scholar 

  • Goodarzi AR, Akbari HR, Salimi M (2016) Enhanced stabilization of highly expansive clay by mixing cement and silica fume. Appl Clay Sci 132-133:675–684

    Article  Google Scholar 

  • Holtz WG, Gibbs HJ (1956) Engineering properties of expansive clays. Trans Am Soc Civ Eng 121:641–663

    Google Scholar 

  • Hu AK, Chen X, Chen J, Ren X (2018) Laboratory investigation of the effect of nano-silica on unconfined compressive strength and frost heaving characteristics of silty clay. Soil Mech Found Eng 55(9):353–357

    Google Scholar 

  • Jotisankasa A, Coop M, Ridley A (2009) The mechanical behavior of an unsaturated compacted silty clay. Géotechnique 59:415–428

    Article  Google Scholar 

  • Kalhor A, Ghazavi M, Roustaei M, Mirhosseini SM (2019) Influence of nano-SiO2 on geotechnical properties of fine soils subjected to freeze-thaw cycles. Cold Reg Sci Technol. https://doi.org/10.1016/j.coldregions.2019.03.011

  • Kalkan E (2011) Impact of wetting–drying cycles on swelling behavior of clayey soils modified by silica fume. Appl Clay Sci 52:345–352

    Article  Google Scholar 

  • Katti DR, Srinivasamurthy L, Katti KS (2015) Molecular modeling of initiation of interlayer swelling in Na–montmorillonite expansive clay. Can Geotech J 52:1385–1395

    Article  Google Scholar 

  • Kherad MK, Vakili AH, bin Selamat MR, Salimi M, Farhadi MS, Dezh M (2020) An experimental evaluation of electroosmosis treatment effect on the mechanical and chemical behavior of expansive soils. Arab J Geosci 13(6):1–12

    Article  Google Scholar 

  • Obuzor GN, Kinuthia JM, Robinson RB (2011) Enhancing the durability of flooded low-capacity soils by utilizing lime-activated ground granulated blastfurnace slag (GGBS). Eng Geol 123(3):179–186

    Article  Google Scholar 

  • Pham H, Nguyen QP (2014) Effect of silica nanoparticles on clay swelling and aqueous stability of nanoparticle dispersions. J Nanopart Res 16:2137. https://doi.org/10.1007/s11051-013-2137-9

    Article  Google Scholar 

  • Pooni J, Giustozzi F, Robert D, Setunge S, O'Donnell B (2019) Durability of enzyme stabilized expansive soil in road pavements subjected to moisture degradation. Transp Geotech. https://doi.org/10.1016/j.trgeo.2019.100255

  • Salimi M, Ghorbani A (2020) Mechanical and compressibility characteristics of a soft clay stabilized by slag-based mixtures and geopolymers. Appl Clay Sci 184:105390

    Article  Google Scholar 

  • Salimi M, Ilkhani M, Vakili AH (2018) Stabilization treatment of Na-montmorillonite with binary mixtures of lime and steelmaking slag. Int J Geotech Eng. https://doi.org/10.1080/19386362.2018.1439294

  • Seco A, Ramirez F, Miqueleiz L, Garcia B (2011) Stabilization of expansive soils for use in construction. Appl Clay Sci 51:348–352

    Article  Google Scholar 

  • Seed HB, Woodward RJ, Lundgren R (1962) Prediction of swelling potential for compacted clays. J Soil Mech Found Eng 88:53–87

    Google Scholar 

  • Shalabi FI, Asi IM, Qasrawi HY (2017) Effect of by-product steel slag on the engineering properties of clay soils. J King Saud Univ Sci 29:394–399

    Google Scholar 

  • Shang Y, Fu Y (2018) Experimental study of the mechanical properties of expansive soil with added nanomaterials. Arab J Geosci 11:180. https://doi.org/10.1007/s12517-018-3518-2

    Article  Google Scholar 

  • Sahoo JP, Pradhan PK (2010) Effect of lime stabilized soil cushion on strength behavior of expansive soil. Geotech Geol Eng 28(6):889–897

    Article  Google Scholar 

  • Sivakumar V, Tan WC, Murray EJ, Mckinley JD (2006) Wetting, drying and compression characteristics of compacted clay. Géotechnique 56(1):57–62

    Article  Google Scholar 

  • Taha MR, Taha OME (2012) Influence of nano-material on the expansive and shrinkage soil behavior. J Nanopart Res 14:1190

    Article  Google Scholar 

  • Tripathy S, Rao KS (2009) Cyclic swell- shrink behavior of a compacted expansive soil. Geotech Geol Eng 27:89–103

    Article  Google Scholar 

  • Tripathy S, Subba Rao KS, Fredlund DG (2002) Water content-void ratio swell-shrink paths of compacted expansive soils. Can Geotech J 39:938–959

    Article  Google Scholar 

  • Tawfiq, S. Nalbantoglu, Z. (2009). Swell-shrink behavior of expansive clays. In: Proceeding of 2nd international conference on new developments in soil mechanics and geotechnical engineering, Nicosia, North Cyprus, pp.336–341

  • Vakili AH, Shojaei SI, Salimi M, bin Selamat MR, Farhadi MS (2020) Contact erosional behaviour of foundation of pavement embankment constructed with nanosilica-treated dispersive soils. Soils Found. https://doi.org/10.1016/j.sandf.2020.02.001

  • Vakili AH, Selamat MR, Mohajeri P (2016) Discussion of “Experimental study on contact erosion failure in pavement embankment with dispersive clay” by S. Premkumar, J. Piratheepan, A. Arulrajah, M. Disfani, and P. Rajeev. J Mater Civ Eng 29. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001452

  • Wang Q, Tang AM, Cui YJ, Delage P, Barnichon JD, Ye WM (2013) The effects of technological voids on the hydro-mechanical behavior of compacted bentonite–sand mixture. Soils Found 53(2):232–245

    Article  Google Scholar 

  • Wang Q, Cui YJ, Tang AM, Delage P, Gatmiri B, Ye WM (2014) Long-term effect of water chemistry on the swelling pressure of a bentonite-based material. Appl Clay Sci 87(1):157–162

    Article  Google Scholar 

  • Wu J, Liu Q, Deng Y, Yu X, Feng Q, Yan C (2019) Expansive soil modified by waste steel slag and its application in subbase layer of highways. Soils Found 59:955–965

    Article  Google Scholar 

  • Xu B, Yi Y (2019) Soft clay stabilization using ladle slag-ground granulated blast furnace slag blend. Appl Clay Sci 178(2019):105136

    Article  Google Scholar 

  • Yong RN, Ouhadi VR (2007) Experimental study on instability of bases on natural and lime/cement-stabilized clayey soils. Appl Clay Sci 35:238–249

    Article  Google Scholar 

  • Zhang, R., Yang, H. and Zheng, J. 2006.The effect of vertical pressure on the deformation and strength of expansive soil during cyclic wetting and drying. In: proceedings of the 4th international conference on unsaturated soil, Arizona, USA, pp.894–905

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hossein Vakili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahsavani, S., Vakili, A.H. & Mokhberi, M. The effect of wetting and drying cycles on the swelling-shrinkage behavior of the expansive soils improved by nanosilica and industrial waste. Bull Eng Geol Environ 79, 4765–4781 (2020). https://doi.org/10.1007/s10064-020-01851-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-020-01851-6

Keywords

Navigation