Skip to main content

Advertisement

Log in

Carboxymethyl Cellulose-Based Hydrogel: Dielectric Study, Antimicrobial Activity and Biocompatibility

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, we intended to investigate the antimicrobial activity, biocompatibility, and study the electrical conductivity of the polypyrrole on the surface of the conducting hydrogel such as carboxymethyl cellulose-g-poly (acrylamide-co-acrylamido-2-methyl-1-propane sulfonic acid). Broadband dielectric spectroscopy was employed to follow up the electrochemical double layer that developed at the electrode surfaces. Biocompatible conducting hydrogel showed the establishment of the electrical double layer in a wide range of frequencies, and the DC-conductivity values were in top of the semiconductors range. The addition of polypyrrole not only diminishes the effect of water transformations on conductivity, but also manifests the permittivity’s value (from 1.7 × 106 to 2.4 × 108). In addition, it lowers the charging–discharging loss of energy. Comparing the prepared conductive hydrogels to the ionic liquids, it showed that hydrogels have more ability to be applicable in the energy storage systems. Also, the prepared hydrogels biocompatibility was tested against normal cell line (Vero cells) which recorded the excellent compatibility with cells. The antimicrobial activity was examined against some pathogens; (i) Gram-negative bacteria: Escherichia coli (NCTC-10416) and Pseudomonas aeruginosa (NCID-9016); (ii) Gram-positive bacteria: Bacillus subtilis (NCID-3610); (iii) unicellular fungi: Candida albicans (NCCLS-11) and (iv) filamentous fungi Aspergillus niger (ATCC-22342).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Crump, J.A.; Ramadhani, H.O.; Morrissey, A.B.; Msuya, L.J.; Yang, L.Y.; Chow, S.C.; Morpeth, S.C.; Reyburn, H.; Njau, B.N.; Shaw, A.V.: Invasive bacterial and fungal infections among hospitalized HIV-infected and HIV-uninfected children and infants in northern Tanzania. Trop. Med. Int. Health 16(7), 830–837 (2011)

    Article  Google Scholar 

  2. Grundmann, H.; Aanensen, D.M.; Van Den Wijngaard, C.C.; Spratt, B.G.; Harmsen, D.; Friedrich, A.W.; European Staphylococcal Reference Laboratory Working Group: Geographic distribution of Staphylococcus aureus causing invasive infections in Europe: a molecular-epidemiological analysis. PLoS Med. 7(1), e1000215 (2010)

    Article  Google Scholar 

  3. Russell, P.S.: Clinical Approach to Infection in the Compromised Host, p. 2013. Springer, New York (2013)

    Google Scholar 

  4. Hasanin, M.; El-Henawy, A.; Eisa, W.H.; El-Saied, H.; Sameeh, M.: Nano-amino acid cellulose derivatives: eco-synthesis, characterization, and antimicrobial properties. Int. J. Biol. Macromol. 132, 963–969 (2019)

    Article  Google Scholar 

  5. Shehabeldine, A.; Hasanin, M.: Green synthesis of hydrolyzed starch–chitosan nano-composite as drug delivery system to gram negative bacteria. Environ. Nanotechnol. Monit. Manag. 12, 100252 (2019)

    Google Scholar 

  6. Cloutier, M.; Mantovani, D.; Rosei, F.: Antibacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol. 33(11), 637–652 (2015)

    Article  Google Scholar 

  7. Dacrory, S.; Abou-Yousef, H.; Kamel, S.; Turky, G.: Development of biodegradable semiconducting foam based on micro-fibrillated cellulose/Cu-NPs. Int. J. Biol. Macromol. 132, 351–359 (2019)

    Article  Google Scholar 

  8. Qazi, T.H.; Rai, R.; Boccaccini, A.R.: Tissue engineering of electrically responsive tissues using polyaniline based polymers: a review. Biomaterials 35(33), 9068–9086 (2014)

    Article  Google Scholar 

  9. Tang, Q.; Wu, J.; Sun, H.; Fan, S.; Hu, D.; Lin, J.: Superabsorbent conducting hydrogel from poly (acrylamide-aniline) with thermo-sensitivity and release properties. Carbohyd. Polym. 73(3), 473–481 (2008)

    Article  Google Scholar 

  10. Guo, B.; Glavas, L.; Albertsson, A.-C.: Biodegradable and electrically conducting polymers for biomedical applications. Prog. Polym. Sci. 38(9), 1263–1286 (2013)

    Article  Google Scholar 

  11. Kamel, S.; Haroun, A.A.; El-Nahrawy, A.M.; Diab, M.A.: Electroconductive composites containing nanocellulose, nanopolypyrrole, and silver nano particles. J. Renew. Mater. 7(2), 193–203 (2019)

    Article  Google Scholar 

  12. Chu, X.; Huang, H.; Zhang, H.; Zhang, H.; Gu, B.; Su, H.; Liu, F.; Han, Y.; Wang, Z.; Chen, N.: Electrochemically building three-dimensional supramolecular polymer hydrogel for flexible solid-state micro-supercapacitors. Electrochim. Acta 301, 136–144 (2019)

    Article  Google Scholar 

  13. Smirnov, M.A.; Sokolova, M.P.; Bobrova, N.V.; Kasatkin, I.A.; Lahderanta, E.; Elyashevich, G.K.: Capacitance properties and structure of electroconducting hydrogels based on copoly (aniline–p-phenylenediamine) and polyacrylamide. J. Power Sources 304, 102–110 (2016)

    Article  Google Scholar 

  14. Zhang, L.; Shi, G.: Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. J. Phys. Chem. C 115(34), 17206–17212 (2011)

    Article  Google Scholar 

  15. Li, W.; Zeng, X.; Wang, H.; Wang, Q.; Yang, Y.: Polyaniline-poly (styrene sulfonate) conducting hydrogels reinforced by supramolecular nanofibers and used as drug carriers with electric-driven release. Eur. Polym. J. 66, 513–519 (2015)

    Article  Google Scholar 

  16. Wu, H.; Yu, G.; Pan, L.; Liu, N.; McDowell, M.T.; Bao, Z.; Cui, Y.: Stable Li-ion battery anodes by in situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 4, 1943 (2013)

    Article  Google Scholar 

  17. Zhao, Y.; Liu, B.; Pan, L.; Yu, G.: 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Energy Environ. Sci. 6(10), 2856–2870 (2013)

    Article  Google Scholar 

  18. Hammad, A.A.; El-Aziz, M.A.; Hasanin, M.; Kamel, S.: A novel electromagnetic biodegradable nanocomposite based on cellulose, polyaniline, and cobalt ferrite nanoparticles. Carbohyd. Polym. 216, 54–62 (2019)

    Article  Google Scholar 

  19. Abdelraof, M.; Hasanin, M.S.; Farag, M.M.; Ahmed, H.Y.: Green synthesis of bacterial cellulose/bioactive glass nanocomposites: effect of glass nanoparticles on cellulose yield, biocompatibility and antimicrobial activity. Int. J. Biol. Macromol. 138, 975–985 (2019)

    Article  Google Scholar 

  20. Hasanin, M.S.; Mostafa, A.M.; Mwafy, E.A.; Darwesh, O.M.: Eco-friendly cellulose nano fibers via first reported Egyptian Humicola fuscoatra Egyptia X4: isolation and characterization. Environ. Nanotechnol. Monit. Manag. 10, 409–418 (2018)

    Google Scholar 

  21. Hasanin, M.S.; Moustafa, G.O.: New potential green, bioactive and antimicrobial nanocomposites based on cellulose and amino acid. Int. J. Biol. Macromol. 144, 441–448 (2020)

    Article  Google Scholar 

  22. Mwafy, E.A.; Hasanin, M.S.; Mostafa, A.M.: Cadmium oxide/TEMPO-oxidized cellulose nanocomposites produced by pulsed laser ablation in liquid environment: synthesis, characterization, and antimicrobial activity. Opt. Laser Technol. 120, 105744 (2019)

    Article  Google Scholar 

  23. Chang, C.; Duan, B.; Cai, J.; Zhang, L.: Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur. Polym. J. 46(1), 92–100 (2010)

    Article  Google Scholar 

  24. Bao, Y.; Ma, J.; Li, N.: Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly (AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohyd. Polym. 84(1), 76–82 (2011)

    Article  Google Scholar 

  25. Wu, Q.; Wei, J.; Xu, B.; Liu, X.; Wang, H.; Wang, W.; Wang, Q.; Liu, W.: A robust, highly stretchable supramolecular polymer conductive hydrogel with self-healability and thermo-processability. Sci. Rep. 7, 41566 (2017)

    Article  Google Scholar 

  26. Pan, L.; Yu, G.; Zhai, D.; Lee, H.R.; Zhao, W.; Liu, N.; Wang, H.; Tee, B.C.-K.; Shi, Y.; Cui, Y.: Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc. Natl. Acad. Sci. 109(24), 9287–9292 (2012)

    Article  Google Scholar 

  27. Yang, C.; Wang, W.; Yao, C.; Xie, R.; Ju, X.-J.; Liu, Z.; Chu, L.-Y.: Hydrogel walkers with electro-driven motility for cargo transport. Sci. Rep. 5, 13622 (2015)

    Article  Google Scholar 

  28. El-Sayed, N.S.; Moussa, M.A.; Kamel, S.; Turky, G.: Development of electrical conducting nanocomposite based on carboxymethyl cellulose hydrogel/silver nanoparticles@polypyrrole. Synth. Met. 250, 104–114 (2019)

    Article  Google Scholar 

  29. Cheng, Y.-L.; Chang, W.-L.; Lee, S.-C.; Liu, Y.-G.; Lin, H.-C.; Chen, C.-J.; Yen, C.-Y.; Yu, D.-S.; Lin, S.-Z.; Harn, H.-J.: Acetone extract of Bupleurum scorzonerifolium inhibits proliferation of A549 human lung cancer cells via inducing apoptosis and suppressing telomerase activity. Life Sci. 73(18), 2383–2394 (2003)

    Article  Google Scholar 

  30. Cassignol, C.; Olivier, P.; Ricard, A.: Influence of the dopant on the polypyrrole moisture content: effects on conductivity and thermal stability. J. Appl. Polym. Sci. 70(8), 1567–1577 (1998)

    Article  Google Scholar 

  31. Moussa, M.A.; Ghoneim, A.M.; Abdel Rehim, M.H.; Khairy, S.A.; Soliman, M.A.; Turky, G.M.: Relaxation dynamic and electrical mobility for poly (methyl methacrylate)-polyaniline composites. J. Appl. Polym. Sci. 134(42), 45415 (2017)

    Article  Google Scholar 

  32. Youssef, A.; Abdel-Aziz, M.; El-Sayed, E.; Abdel-Aziz, M.; El-Hakim, A.A.; Kamel, S.; Turky, G.: Morphological, electrical & antibacterial properties of trilayered Cs/PAA/PPy bionanocomposites hydrogel based on Fe3O4-NPs. Carbohyd. Polym. 196, 483–493 (2018)

    Article  Google Scholar 

  33. Moussa, M.A.; Abdel Rehim, M.H.; Ghoneim, A.M.; Khairy, S.A.; Soliman, M.A.; Turky, G.M.: Dielectric investigations and charge transport in PS-PAni composites with ionic and nonionic surfactants. J. Phys. Chem. Solids 133, 163–170 (2019)

    Article  Google Scholar 

  34. Paluch, M.: Dielectric Properties of Ionic Liquids. Springer, New York (2016)

    Book  Google Scholar 

  35. Turky, G.; Sangoro, J.; AbdelRehim, M.; Kremer, F.: Secondary relaxations and electrical conductivity in hyperbranched polyester amides. J. Polym. Sci. B Polym. Phys. 48(14), 1651–1657 (2010)

    Article  Google Scholar 

  36. Kornyshev, A.A.: Double-Layer in Ionic Liquids: Paradigm Change?. ACS Publications, Washington (2007)

    Google Scholar 

  37. Sangoro, J.; Iacob, C.; Naumov, S.; Valiullin, R.; Rexhausen, H.; Hunger, J.; Buchner, R.; Strehmel, V.; Kärger, J.; Kremer, F.: Diffusion in ionic liquids: the interplay between molecular structure and dynamics. Soft Matter 7(5), 1678–1681 (2011)

    Article  Google Scholar 

  38. Krause, C.; Sangoro, J.; Iacob, C.; Kremer, F.: Charge transport and dipolar relaxations in imidazolium-based ionic liquids. J. Phys. Chem. B 114(1), 382–386 (2009)

    Article  Google Scholar 

  39. Roling, B.; Balabajew, M.; Wallauer, J.: Electrochemical Double Layers in Ionic Liquids Investigated by Broadband Impedance Spectroscopy and Other Complementary Experimental Techniques, Dielectric Properties of Ionic Liquids, pp. 157–192. Springer, New York (2016)

    Google Scholar 

  40. Sippel, P.; Lunkenheimer, P.; Krohns, S.; Thoms, E.; Loidl, A.: Importance of liquid fragility for energy applications of ionic liquids. Sci. Rep. 5, 13922 (2015)

    Article  Google Scholar 

  41. Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9–10), 1051–1069 (2015)

    Article  Google Scholar 

  42. El-Saied, H.; Mostafa, A.M.; Hasanin, M.S.; Mwafy, E.A.; Mohammed, A.A.: Synthesis of antimicrobial cellulosic derivative and its catalytic activity. J. King Saud Univ. Sci. 32, 436–442 (2018)

    Article  Google Scholar 

  43. Ibrahim, S.; El Saied, H.; Hasanin, M.: Active paper packaging material based on antimicrobial conjugated nano-polymer/amino acid as edible coating. J. King Saud Univ. Sci. 31(4), 1095–1102 (2019)

    Article  Google Scholar 

  44. Mostafa, A.M.; Mwafy, E.A.; Hasanin, M.S.: One-pot synthesis of nanostructured CdS, CuS, and SnS by pulsed laser ablation in liquid environment and their antimicrobial activity. Opt. Laser Technol. 121, 105824 (2020)

    Article  Google Scholar 

  45. Brett, D.W.: A discussion of silver as an antimicrobial agent: alleviating the confusion. Ostomy/Wound Manag. 52(1), 34–41 (2006)

    Google Scholar 

  46. Dastjerdi, R.; Montazer, M.: A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf. B 79(1), 5–18 (2010)

    Article  Google Scholar 

  47. Yoon, K.-Y.; Byeon, J.H.; Park, J.-H.; Hwang, J.: Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci. Total Environ. 373(2–3), 572–575 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support for this research from National Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Hasanin.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turky, G., Moussa, M.A., Hasanin, M. et al. Carboxymethyl Cellulose-Based Hydrogel: Dielectric Study, Antimicrobial Activity and Biocompatibility. Arab J Sci Eng 46, 17–30 (2021). https://doi.org/10.1007/s13369-020-04655-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04655-8

Keywords

Navigation