Skip to main content
Log in

SORLA Expression in Synaptic Plexiform Layers of Mouse Retina

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Sorting protein–related receptor containing LDLR class A repeats (SORLA; also known as LR11) exerts intraneuronal trafficking functions in the central nervous system. Recently, involvement of SORLA in retinogenesis was proposed, but no studies have examined yet in detail the expression pattern of this sorting receptor in the retina. Here, we provide a spatio-temporal characterization of SORL1 mRNA and its translational product SORLA in the postnatal mouse retina. Using stereological analysis, we confirmed previous studies showing that receptor depletion in knockout mice significantly reduces the number of cells in the inner nuclear layer (INL), suggesting that functional SORLA expression is essential for the development of this retinal strata. qPCR and Western blot analyses showed that SORL1/SORLA expression peaks at postnatal day 15, just after eye opening. Interestingly, we found that transcripts are somatically located in several neuronal populations residing in the INL and the ganglion cell layer, whereas SORLA protein is also present in the synaptic plexiform layers. In line with receptor expression in dendritic terminals, we found delayed stratification of the inner plexiform layer in knockout mice, indicating an involvement of SORLA in neuronal connectivity. Altogether, these data suggest a novel role of SORLA in synaptogenesis. Receptor dysfunctions may be implicated in morphological and functional impairments of retinal inner layer formation associated with eye disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Andersen OM, Reiche J, Schmidt V, Gotthardt M, Spoelgen R, Behlke J, von Arnim CAF, Breiderhoff T et al (2005) Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci U S A 102:13461–13466. https://doi.org/10.1073/pnas.0503689102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Offe K, Dodson SE, Shoemaker JT, Fritz JJ, Gearing M, Levey AI, Lah JJ (2006) The lipoprotein receptor LR11 regulates amyloid beta production and amyloid precursor protein traffic in endosomal compartments. J Neurosci 26:1596–1603. https://doi.org/10.1523/JNEUROSCI.4946-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hermey G (2009) The Vps10p-domain receptor family. Cell Mol Life Sci 66:2677–2689. https://doi.org/10.1007/s00018-009-0043-1

    Article  CAS  PubMed  Google Scholar 

  4. Scherzer CR, Offe K, Gearing M, Rees HD, Fang G, Heilman CJ, Schaller C, Bujo H et al (2004) Loss of apolipoprotein E receptor LR11 in Alzheimer disease. Arch Neurol 61:1200–1205. https://doi.org/10.1001/archneur.61.8.1200

    Article  PubMed  Google Scholar 

  5. Rohe M, Carlo A-S, Breyhan H, Sporbert A, Militz D, Schmidt V, Wozny C, Harmeier A et al (2008) Sortilin-related receptor with A-type repeats (SORLA) affects the amyloid precursor protein-dependent stimulation of ERK signaling and adult neurogenesis. J Biol Chem 283:14826–14834. https://doi.org/10.1074/jbc.M710574200

    Article  CAS  PubMed  Google Scholar 

  6. Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F, Katayama T, Baldwin CT et al (2007) The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet 39:168–177. https://doi.org/10.1038/ng1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nicolas G, Charbonnier C, Wallon D et al (2016) SORL1 rare variants: a major risk factor for familial early-onset Alzheimer’s disease. Mol Psychiatry 21:831–836. https://doi.org/10.1038/mp.2015.121

    Article  CAS  PubMed  Google Scholar 

  8. Verheijen J, Van den Bossche T, van der Zee J et al (2016) A comprehensive study of the genetic impact of rare variants in SORL1 in European early-onset Alzheimer’s disease. Acta Neuropathol 132:213–224. https://doi.org/10.1007/s00401-016-1566-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Holstege H, van der Lee SJ, Hulsman M, Wong TH, van Rooij JGJ, Weiss M, Louwersheimer E, Wolters FJ et al (2017) Characterization of pathogenic SORL1 genetic variants for association with Alzheimer’s disease: a clinical interpretation strategy. Eur J Hum Genet 25:973–981. https://doi.org/10.1038/ejhg.2017.87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Raghavan NS, Brickman AM, Andrews H, Manly JJ, Schupf N, Lantigua R, Wolock CJ, Kamalakaran S et al (2018) Whole-exome sequencing in 20,197 persons for rare variants in Alzheimer’s disease. Ann Clin Transl Neurol 5:832–842. https://doi.org/10.1002/acn3.582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cerquera-Jaramillo MA, Nava-Mesa MO, González-Reyes RE, Tellez-Conti C, de-la-Torre A (2018) Visual features in Alzheimer’s disease: from basic mechanisms to clinical overview. Neural Plast 2018:2941783–2941721. https://doi.org/10.1155/2018/2941783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. London A, Benhar I, Schwartz M (2013) The retina as a window to the brain-from eye research to CNS disorders. Nat Rev Neurol 9:44–53. https://doi.org/10.1038/nrneurol.2012.227

    Article  CAS  PubMed  Google Scholar 

  13. Jansen P, Giehl K, Nyengaard JR, Teng K, Lioubinski O, Sjoegaard SS, Breiderhoff T, Gotthardt M et al (2007) Roles for the pro-neurotrophin receptor sortilin in neuronal development, aging and brain injury. Nat Neurosci 10:1449–1457. https://doi.org/10.1038/nn2000

    Article  CAS  PubMed  Google Scholar 

  14. Santos AM, Lopez-Sanchez N, Martin-Oliva D et al (2012) Sortilin participates in light-dependent photoreceptor degeneration in vivo. PLoS One 7:e36243. https://doi.org/10.1371/journal.pone.0036243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu J, Reggiani JDS, Laboulaye MA, Pandey S, Chen B, Rubenstein JLR, Krishnaswamy A, Sanes JR (2018) Tbr1 instructs laminar patterning of retinal ganglion cell dendrites. Nat Neurosci 21:659–670. https://doi.org/10.1038/s41593-018-0127-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hermey G, Schaller HC, Hermans-Borgmeyer I (2001) Transient expression of SorCS in developing telencephalic and mesencephalic structures of the mouse. Neuroreport 12:29–32. https://doi.org/10.1097/00001756-200101220-00014

    Article  CAS  PubMed  Google Scholar 

  17. Boggild S, Molgaard S, Glerup S, Nyengaard JR (2018) Highly segregated localization of the functionally related vps10p receptors sortilin and SorCS2 during neurodevelopment. J Comp Neurol 526:1267–1286. https://doi.org/10.1002/cne.24403

    Article  CAS  PubMed  Google Scholar 

  18. Hashimoto R, Jiang M, Shiba T, Hiruta N, Takahashi M, Higashi M, Hori Y, Bujo H et al (2017) Soluble form of LR11 is highly increased in the vitreous fluids of patients with idiopathic epiretinal membrane. Graefes Arch Clin Exp Ophthalmol 255:885–891. https://doi.org/10.1007/s00417-017-3585-1

    Article  CAS  PubMed  Google Scholar 

  19. Takahashi M, Bujo H, Shiba T, Jiang M, Maeno T, Shirai K (2012) Enhanced circulating soluble LR11 in patients with diabetic retinopathy. Am J Ophthalmol 154:187–192. https://doi.org/10.1016/j.ajo.2012.01.035

    Article  CAS  PubMed  Google Scholar 

  20. Shiba T, Bujo H, Takahashi M, Sato Y, Jiang M, Hori Y, Maeno T, Shirai K (2013) Vitreous fluid and circulating levels of soluble lr11, a novel marker for progression of diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 251:2689–2695. https://doi.org/10.1007/s00417-013-2373-9

    Article  CAS  PubMed  Google Scholar 

  21. Hermans-Borgmeyer I, Hampe W, Schinke B, Methner A, Nykjaer A, Süsens U, Fenger U, Herbarth B et al (1998) Unique expression pattern of a novel mosaic receptor in the developing cerebral cortex. Mech Dev 70:65–76. https://doi.org/10.1016/s0925-4773(97)00177-9

    Article  CAS  PubMed  Google Scholar 

  22. Gustmann S, Dunker N (2010) In vivo-like organotypic murine retinal wholemount culture. J Vis Exp. https://doi.org/10.3791/1634

  23. Jacobsen L, Madsen P, Jacobsen C, Nielsen MS, Gliemann J, Petersen CM (2001) Activation and functional characterization of the mosaic receptor SorLA/LR11. J Biol Chem 276:22788–22796. https://doi.org/10.1074/jbc.M100857200

    Article  CAS  PubMed  Google Scholar 

  24. Martin-Oliva D, Martin-Guerrero SM, Matia-Gonzalez AM, Ferrer-Martin RM, Martin-Estebane M, Carrasco MC, Sierra A, Marin-Teva JL et al (2015) DNA damage, poly(ADP-ribose) polymerase activation, and phosphorylated histone H2AX expression during postnatal retina development in C57BL/6 mouse. Invest Ophthalmol Vis Sci 56:1301–1309. https://doi.org/10.1167/iovs.14-15828

    Article  CAS  PubMed  Google Scholar 

  25. Jimeno D, Gomez C, Calzada N et al (2016) RASGRF2 controls nuclear migration in postnatal retinal cone photoreceptors. J Cell Sci 129:729–742. https://doi.org/10.1242/jcs.180919

    Article  CAS  PubMed  Google Scholar 

  26. Dorph-Petersen KA, Nyengaard JR, Gundersen HJ (2001) Tissue shrinkage and unbiased stereological estimation of particle number and size. J Microsc 204:232–246. https://doi.org/10.1046/j.1365-2818.2001.00958.x

    Article  CAS  PubMed  Google Scholar 

  27. Gundersen HJ, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263

    Article  CAS  Google Scholar 

  28. Dinet V, An N, Ciccotosto GD, Bruban J, Maoui A, Bellingham SA, Hill AF, Andersen OM et al (2011) APP involvement in retinogenesis of mice. Acta Neuropathol 121:351–363. https://doi.org/10.1007/s00401-010-0762-2

    Article  CAS  PubMed  Google Scholar 

  29. Nyengaard JR (1999) Stereologic methods and their application in kidney research. J Am Soc Nephrol 10:1100–1123

    CAS  PubMed  Google Scholar 

  30. Fisher LJ (1979) Development of synaptic arrays in the inner plexiform layer of neonatal mouse retina. J Comp Neurol 187:359–372. https://doi.org/10.1002/cne.901870207

    Article  CAS  PubMed  Google Scholar 

  31. Ammermuller J, Kolb H (1995) The organization of the turtle inner retina. I ON- and OFF-center pathways. J Comp Neurol 358:1–34. https://doi.org/10.1002/cne.903580102

    Article  CAS  PubMed  Google Scholar 

  32. Mojumder DK, Wensel TG, Frishman LJ (2008) Subcellular compartmentalization of two calcium binding proteins, calretinin and calbindin-28 kDa, in ganglion and amacrine cells of the rat retina. Mol Vis 14:1600–1613

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lambert JC, Ibrahim-Verbaas CA, Harold D et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45:1452–1458. https://doi.org/10.1038/ng.2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miyashita A, Koike A, Jun G, Wang LS, Takahashi S, Matsubara E, Kawarabayashi T, Shoji M et al (2013) SORL1 is genetically associated with late-onset Alzheimer’s disease in Japanese, Koreans and Caucasians. PLoS One 8:e58618. https://doi.org/10.1371/journal.pone.0058618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gao XR, Huang H, Kim H (2018) Genome-wide association analyses identify 139 loci associated with macular thickness in the UK Biobank cohort. Hum Mol Genet 28:1162–1172. https://doi.org/10.1093/hmg/ddy422

    Article  CAS  PubMed Central  Google Scholar 

  36. Martin PM, Roon P, Van Ells TK et al (2004) Death of retinal neurons in streptozotocin-induced diabetic mice. Invest Ophthalmol Vis Sci 45:3330–3336. https://doi.org/10.1167/iovs.04-0247

    Article  PubMed  Google Scholar 

  37. Barber AJ, Antonetti DA, Kern TS, Reiter CEN, Soans RS, Krady JK, Levison SW, Gardner TW et al (2005) The Ins2Akita mouse as a model of early retinal complications in diabetes. Invest Ophthalmol Vis Sci 46:2210–2218. https://doi.org/10.1167/iovs.04-1340

    Article  PubMed  Google Scholar 

  38. van Dijk HW, Kok PHB, Garvin M, Sonka M, DeVries JH, Michels RPJ, van Velthoven MEJ, Schlingemann RO et al (2009) Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Invest Ophthalmol Vis Sci 50:3404–3409. https://doi.org/10.1167/iovs.08-3143

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hart NJ, Koronyo Y, Black KL, Koronyo-Hamaoui M (2016) Ocular indicators of Alzheimer’s: exploring disease in the retina. Acta Neuropathol 132:767–787. https://doi.org/10.1007/s00401-016-1613-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tian N, Copenhagen DR (2001) Visual deprivation alters development of synaptic function in inner retina after eye opening. Neuron 32:439–449. https://doi.org/10.1016/s0896-6273(01)00470-6

    Article  CAS  PubMed  Google Scholar 

  41. Tootle JS (1993) Early postnatal development of visual function in ganglion cells of the cat retina. J Neurophysiol 69:1645–1660. https://doi.org/10.1152/jn.1993.69.5.1645

    Article  CAS  PubMed  Google Scholar 

  42. Wang GY, Liets LC, Chalupa LM (2001) Unique functional properties of on and off pathways in the developing mammalian retina. J Neurosci 21:4310–4317

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for expert technical assistance from Sandra Bonnesen and Helene Andersen.

Funding

This work is supported by grants from the Novo Nordisk Foundation, the Augustinus Foundation, the Hartmann Foundation, the A. P. Møller Foundation, the Henrik Henriksen Foundation and the Danish Council for Independent Research. Centre for Stochastic Geometry and Advanced Bioimaging is supported by Villum Foundation.

Author information

Authors and Affiliations

Authors

Contributions

GM and OA wrote the manuscript. OA coordinated the study. qPCR and in situ studies were performed by EZ and GM. Protein characterization and histological studies in retina samples were carried out by MJ, IH, MK and AM. PB and JN contributed to the stereological analyses. CV, HV and JN provided expert advices, assisting with data interpretation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Olav M. Andersen.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethical Approval

All procedures involving animals were conducted in full compliance with the Danish and European regulations.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• SORL1/SORLA is expressed during postnatal mouse retinogenesis.

• SORL1 transcripts are mainly localized somatically in ganglion cells and in the inner nuclear layer.

Localization in the inner and outer plexiform layers was observed for SORLA receptor.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monti, G., Jensen, M.L., Mehmedbasic, A. et al. SORLA Expression in Synaptic Plexiform Layers of Mouse Retina. Mol Neurobiol 57, 3106–3117 (2020). https://doi.org/10.1007/s12035-020-01946-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01946-x

Keywords

Navigation