Skip to main content
Log in

Elemental Distribution in Animal Carpal and Tarsal Bones Using Differences in X-ray Fluorescence Energy

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Little is known as to whether different operating voltages of X-ray fluorescence (XRF) can affect the accuracy rate for species identification. Here, we have addressed this question by comparing the rate of correct species identification using the elemental composition of either the carpal or tarsal bone obtained from a determination of the different energy values of XRF at 15 and 50 kV using energy-dispersive XRF (ED-XRF). Carpal bones were taken from 16 species and tarsal bones from 11 of these species. The data on the elemental profiles were analyzed by stepwise discriminant analysis for species discrimination. The classification results indicated that 94.1% and 63.7% of the originally grouped cases were correctly classified as carpal bones using 15 kV and 50 kV, respectively. Additionally, 69.4% and 77.3% of the originally grouped cases were correctly classified as tarsal bones using 15 kV and 50 kV, respectively. When the datasets of the elemental profiles obtained using two operating voltages were gathered, the classification results of the prediction rate appeared to be more accurate at 89.7% and 90.7% in the carpal and tarsal bones, respectively. In conclusion, our findings suggest that the elemental profiles of bones obtained using two operating voltages could effectively facilitate accurate species discrimination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Corrieri B, Márquez-Grant N (2019) Using nutrient foramina to differentiate human from non-human long bone fragments in bioarchaeology and forensic anthropology. Homo 70(4):255–268. https://doi.org/10.1127/homo/2019/1113

    Article  PubMed  Google Scholar 

  2. Saulsman B, Oxnard CE, Franklin D (2010) Long bone morphometrics for human from non-human discrimination. Forensic Sci Int 202:e1–e5. https://doi.org/10.1016/j.forsciint.2010.05.009

    Article  Google Scholar 

  3. Nganvongpanit K, Phatsara M, Settakorn J, Mahakkanukrauh P (2015) Differences in compact bone tissue microscopic structure between adult humans (Homo sapiens) and Assam macaques (Macaca assamensis). Forensic Sci Int 254:e1–e5. https://doi.org/10.1016/j.forsciint.2015.06.018

    Article  Google Scholar 

  4. Cummaudo M, Cappella A, Giacomini F, Raffone C, Màrquez-Grant N, Cattaneo C (2019) Histomorphometric analysis of osteocyte lacunae in human and pig: exploring its potential for species discrimination. Int J Legal Med 133(3):711–718. https://doi.org/10.1007/s00414-018-01989-9

    Article  PubMed  Google Scholar 

  5. Cummaudo M, Cappella A, Biraghi M, Raffone C, Màrquez-Grant N, Cattaneo C (2018) Histomorphological analysis of the variability of the human skeleton: forensic implications. Int J Legal Med 132(5):1493–1503. https://doi.org/10.1007/s00414-018-1781-0

    Article  PubMed  Google Scholar 

  6. Nganvongpanit K, Buddhachat K, Klinhom S, Kaewmong P, Thitaram C, Mahakkanukrauh P (2016) Determining comparative elemental profile using handheld X-ray fluorescence in humans, elephants, dogs, and dolphins: preliminary study for species identification. Forensic Sci Int 263:101–106. https://doi.org/10.1016/j.forsciint.2016.03.056

    Article  CAS  PubMed  Google Scholar 

  7. Nganvongpanit K, Brown JL, Buddhachat K, Somgird C, Thitaram C (2016) Elemental analysis of Asian elephant (Elephas maximus) teeth using X-ray fluorescence and a comparison to other species. Biol Trace Elem Res 170(1):94–105. https://doi.org/10.1007/s12011-015-0445-x

    Article  CAS  PubMed  Google Scholar 

  8. Buddhachat K, Klinhom S, Siengdee P, Brown JL, Nomsiri R, Kaewmong P, Thitaram C, Mahakkanukrauh P, Nganvongpanit K (2016) Elemental analysis of bone, teeth, horn and antler in different animal species using non-invasive handheld X-ray fluorescence. PLoS One 11(5):e0155458. https://doi.org/10.1371/journal.pone.0155458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Holland MM, Parsons TJ (1999) Mitochondrial DNA sequence analysis - validation and use for forensic casework. Forensic Sci Rev 11(1):21–50

    CAS  PubMed  Google Scholar 

  10. Buddhachat K, Thitaram C, Brown JL, Klinhom S, Bansiddhi P, Penchart K, Ouitavon K, Sriaksorn K, Pa-in C, Kanchanasaka B, Somgird C, Nganvongpanit K (2016) Use of handheld X-ray fluorescence as a non-invasive method to distinguish between Asian and African elephant tusks. Sci Rep 6:24845. https://doi.org/10.1038/srep24845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Castro W, Hoogewerff J, Latkoczy C, Almirall JR (2010) Application of laser ablation (LA-ICP-SF-MS) for the elemental analysis of bone and teeth samples for discrimination purposes. Forensic Sci Int 195(1–3):17–27

    Article  CAS  Google Scholar 

  12. Nganvongpanit K, Buddhachat K, Brown JL, Klinhom S, Pitakarnnop T, Mahakkanukrauh P (2016) Preliminary study to test the feasibility of sex identification of human (Homo sapiens) bones based on differences in elemental profiles determined by handheld X-ray fluorescence. Biol Trace Elem Res 173(1):21–29. https://doi.org/10.1007/s12011-016-0625-3

    Article  CAS  PubMed  Google Scholar 

  13. Nganvongpanit K, Siengdee P, Buddhachat K, Brown JL, Klinhom S, Pitakarnnop T, Angkawanish T, Thitaram C (2017) Anatomy, histology and elemental profile of long bones and ribs of the Asian elephant (Elephas maximus). Anat Sci Int 92(4):554–568. https://doi.org/10.1007/s12565-016-0361-y

    Article  PubMed  Google Scholar 

  14. Fischer A, Wiechuła D, Przybyła-Misztela C (2013) Changes of concentrations of elements in deciduous teeth with age. Biol Trace Elem Res 154:427–432

    Article  CAS  Google Scholar 

  15. Ravisankar R, Manikandan E, Dheenathayalu M, Rao B, Seshadreesan NP, Nair KGM (2006) Determination and distribution of rare earth elements in beach rock samples using instrumental neutron activation analysis (INAA). Nucl Intrum Meth B 251(2):496–500

    Article  CAS  Google Scholar 

  16. Ravisankar R, Dheenathayalu M, Manikandan E, Bramaji R, Seshaderssan NP, Gajendiran V, Meenakashisundram V (2005) Radioactivity and geochemical analysis of beach rock samples of south east coast of Tamilnadu, India. Radiat Prot Environ 28(1–4):419–424

  17. Prithiviraj B, Manikandan E, Hariharan GN, Nair KGM (2011) Elemental accumulation patterns of the lichen species Physcia tribacoides Nyl., Heterodermia dissecta and Bacidia beckhausii Körb from the walayar RF region, Tamil Nadu, India. Int J PIXE 21(3&4):133–144

    Article  CAS  Google Scholar 

  18. Manikandan E, Prithiviraj B, Kavitha G, Magudathy P, Rajamannan B (2011) 2 MeV-Pixe technique for coastal material ananlysis. Int J PIXE 21(3&4):75–86

    Article  CAS  Google Scholar 

  19. Nganvongpanit K, Buddhachat K, Piboon P, Klinhom S (2016) The distribution of elements in 48 canine compact bone types using handheld X-ray fluorescence. Biol Trace Elem Res 174(1):93–104

    Article  CAS  Google Scholar 

  20. Nganvongpanit K, Buddhachat K, Piboon P, Euppayo T, Kaewmong P, Cherdsukjai P, Kittiwatanawong K, Thitaram C (2017) Elemental classification of the tusks of dugong (Dugong dugong) by HH-XRF analysis and comparison with other species. Sci Rep 7:46167. https://doi.org/10.1038/srep46167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nganvongpanit K, Buddhachat K, Piboon P, Euppayo T, Mahakkanukrauh P (2017) Variation in elemental composition of human teeth and its application for feasible species identification. Forensic Sci Int 271:33–42. https://doi.org/10.1016/j.forsciint.2016.12.017

    Article  CAS  PubMed  Google Scholar 

  22. Buddhachat K, Brown JL, Thitaram C, Klinhom S, Nganvongpanit K (2017) Distinguishing real from fake ivory products by elemental analyses: a Bayesian hybrid classification method. Forensic Sci Int 272:142–149. https://doi.org/10.1016/j.forsciint.2017.01.016

    Article  CAS  PubMed  Google Scholar 

  23. Nganvongpanit K, Buddhachat K, Brown JL (2016) Comparison of bone tissue elements between normal and osteoarthritic pelvic bones in dogs. Biol Trace Elem Res 171(2):344–353. https://doi.org/10.1007/s12011-015-0556-4

    Article  CAS  PubMed  Google Scholar 

  24. Buddhachat K, Piboon P, Nganvongpanit K (2019) Effect of lacquer on altered elemental proportions in the superficial layer of bone, using handheld X-ray fluorescence. Songklanakarin J Sci Technol 41(3):700–707

    CAS  Google Scholar 

  25. Akram R, Natasha Fahad S, Hashmi MZ, Wahid A, Adnan M, Mubeen M, Khan N, Rehmani MIA, Awais M, Abbas M, Shahzad K, Ahmad S, Hammad HM, Nasim W (2019) Trends of electronic waste pollution and its impact on the global environment and ecosystem. Environ Sci Pollut Res Int 26(17):16923–16938. https://doi.org/10.1007/s11356-019-04998-2

    Article  CAS  PubMed  Google Scholar 

  26. Mingkhwan R, Worakhunpiset S (2018) Heavy metal contamination near industrial estate areas in Phra Nakhon Si Ayutthaya Province, Thailand and human health risk assessment. Int J Environ Res Public Health 15(9):E1890. https://doi.org/10.3390/ijerph15091890

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors received financial support provided by the Excellence Center in Veterinary Bioscience (2019–2020), Chiang Mai University, Thailand.

Author information

Authors and Affiliations

Authors

Contributions

TP and KN designed and performed the experiments. KB supported the statistical analysis and PP gave advice. TP, KN, and KB wrote the paper. All the authors read and approved of the final version of the manuscript.

Corresponding author

Correspondence to Korakot Nganvongpanit.

Ethics declarations

Ethical Approval

No ethical approval was required for this study.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 16 kb)

ESM 2

(DOCX 16 kb)

ESM 3

(DOCX 13 kb)

ESM 4

(DOCX 11 kb)

ESM 5

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitakarnnop, T., Buddhachat, K., Pakdeenarong, P. et al. Elemental Distribution in Animal Carpal and Tarsal Bones Using Differences in X-ray Fluorescence Energy. Biol Trace Elem Res 199, 874–887 (2021). https://doi.org/10.1007/s12011-020-02210-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02210-y

Keywords

Navigation