Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 26, 2020

Osteoclast and osteoblast response to strontium-doped struvite coatings on titanium for improved bone integration

  • Claus Moseke ORCID logo , Katharina Wimmer , Markus Meininger , Julia Zerweck , Cornelia Wolf-Brandstetter , Uwe Gbureck and Andrea Ewald EMAIL logo

Abstract

To develop implants with improved bone ingrowth, titanium substrates were coated with homogeneous and dense struvite (MgNH4PO4·6H2O) layers by means of electrochemically assisted deposition. Strontium nitrate was added to the coating electrolyte in various concentrations, in order to fabricate Sr-doped struvite coatings with Sr loading ranging from 10.6 to 115 μg/cm2. It was expected and observed that osteoclast activity surrounding the implant was inhibited. The cytocompatibility of the coatings and the effect of Sr-ions in different concentrations on osteoclast formation were analyzed in vitro. Osteoclast differentiation was elucidated on morphological, biochemical as well as on gene expression level. It could be shown that moderate concentrations of Sr2+ had an inhibitory effect on osteoclast formation, while the growth of osteoblastic cells was not negatively influenced compared to pure struvite surfaces. In summary, the electrochemically deposited Sr-doped struvite coatings are a promising approach to improve bone implant ingrowth.


Corresponding author: Andrea Ewald, Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany, E-mail:

Award Identifier / Grant number: DFG MO 1768/2-1

Funding source: Deutsche Forschungsgemeinschaft

Award Identifier / Grant number: INST 105022/58-1 FUGG

Funding source: Deutsche Forschungsgemeinschaft

Award Identifier / Grant number: WO 1903/2-1

Acknowledgments

The authors wish to thank the Deutsche Forschungsgemeinschaft for their financial support (DFG MO 1768/2-1 and WO 1903/2-1) and the DFG State Major Instrumentation Programme, funding the crossbeam scanning electron microscope Zeiss CB 340 (INST 105022/58-1 FUGG).

  1. Author contributions: conceptualisation: AE, CM, CWB, UG; data curation AE, CM; investigation: JZ, KW, MM, supervision AE, CM, UG; writing original draft: AE, CM, review and editing AE, CM, CWB, UG.

  2. Competing interests: Authors state no conflict of interest.

References

1. Jones F. Teeth and bones: applications of surface science to dental materials and related biomaterials. Surf Sci Rep 2001;42:75–205. https://doi.org/10.1016/S0167-5729(00)00011-X.Search in Google Scholar

2. Alsaadi G, Quirynen M, Komárek A, van Steenberghe D. Impact of local and systemic factors on the incidence of oral implant failures, up to abutment connection. J Clin Periodontol 2007;34:610–7. https://doi.org/10.1111/j.1600-051X.2007.01077.x.Search in Google Scholar PubMed

3. Du Z, Xiao Y, Hashimi S, Hamlet SM, Ivanovski S. The effects of implant topography on osseointegration under estrogen deficiency induced osteoporotic conditions: histomorphometric, transcriptional and ultrastructural analysis. Acta Biomater 2016;42:351–63. https://doi.org/10.1016/j.actbio.2016.06.035.Search in Google Scholar PubMed

4. Boyan B. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 1996;17:137–46. https://doi.org/10.1016/0142-9612(96)85758-9.Search in Google Scholar PubMed

5. Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 1991;25:889–902. https://doi.org/10.1002/jbm.820250708.Search in Google Scholar PubMed

6. Lee B-H, Kim JK, Kim YD, Choi K, Lee KH. In vivo behavior and mechanical stability of surface-modified titanium implants by plasma spray coating and chemical treatments. J Biomed Mater Res A 2004;69:279–85. https://doi.org/10.1002/jbm.a.20126.Search in Google Scholar PubMed

7. Habraken W, Habibovic P, Epple M, Bohner M. Calcium phosphates in biomedical applications: Materials for the future? Mater Today 2016;19:69–87. https://doi.org/10.1016/j.mattod.2015.10.008.Search in Google Scholar

8. Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res 1998;13:94–117. https://doi.org/10.1557/JMR.1998.0015.Search in Google Scholar

9. Moseke C, Gbureck U. Tetracalcium phosphate: synthesis, properties and biomedical applications. Acta Biomater 2010;6:3815–23. https://doi.org/10.1016/j.actbio.2010.04.020.Search in Google Scholar PubMed

10. Koch B, Wolke JG, de Groot K. X-ray diffraction studies on plasma-sprayed calcium phosphate-coated implants. J Biomed Mater Res 1990;24:655–67.https://doi.org/10.1002/jbm.820240603.Search in Google Scholar PubMed

11. Tong W, Chen J, Xingdong Z. Amorphorization and recrystallization during plasma spraying of hydroxyapatite. Biomaterials 1995;16:829–32.https://doi.org/10.1016/0142-9612(95)94143-9.Search in Google Scholar PubMed

12. Strąkowska P, Beutner R, Gnyba M, Zielinski A, Scharnweber D. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films - coating characterization and first cell biological results. Mater Sci Eng C Mater Biol Appl 2016;59:624–35. https://doi.org/10.1016/j.msec.2015.10.063.Search in Google Scholar PubMed

13. Wolf-Brandstetter C, Oswald S, Bierbaum S, Wiesmann H-P, Scharnweber D. Influence of pulse ratio on codeposition of copper species with calcium phosphate coatings on titanium by means of electrochemically assisted deposition. J Biomed Mater Res B Appl Biomater 2014;102:160–72. https://doi.org/10.1002/jbm.b.32992.Search in Google Scholar PubMed

14. Moseke C, Braun W, Ewald A. Electrochemically deposited Ca(OH)2 coatings as a bactericidal and osteointegrative modification of Ti implants. Adv Eng Mater 2009;11:B1–6. https://doi.org/10.1002/adem.200800154.Search in Google Scholar

15. Meininger M, Meininger S, Groll J, Gbureck U, Moseke C. Silver and copper addition enhances the antimicrobial activity of calcium hydroxide coatings on titanium. J Mater Sci Mater Med 2018;29:61. https://doi.org/10.1007/s10856-018-6065-1.Search in Google Scholar PubMed

16. Ma H, Xu B, Lu Y, Li Z. Modeling magnesia-phosphate cement paste at the micro-scale. Mater Lett 2014;125:15–8. https://doi.org/10.1016/j.matlet.2014.03.143.Search in Google Scholar

17. Mestres G, Aguilera FS, Manzanares N, Sauro S, Osorio R, Toledano M, et al. Magnesium phosphate cements for endodontic applications with improved long-term sealing ability. Int Endod J 2014;47:127–39. https://doi.org/10.1111/iej.12123.Search in Google Scholar PubMed

18. Moseke C, Saratsis V, Gbureck U. Injectability and mechanical properties of magnesium phosphate cements. J Mater Sci Mater Med 2011;22:2591–8. https://doi.org/10.1007/s10856-011-4442-0.Search in Google Scholar PubMed

19. Vorndran E, Wunder K, Moseke C, Biermann I, Müller FA, Zorn K, et al. Hydraulic setting Mg3(PO4)2 powders for 3D printing technology. Adv Appl Ceram 2013;110:476–81. https://doi.org/10.1179/1743676111Y.0000000030.Search in Google Scholar

20. Vorndran E, Moseke C, Gbureck U. 3D printing of ceramic implants. MRS Bull 2015;40:127–36. https://doi.org/10.1557/mrs.2015.326.Search in Google Scholar

21. Meininger M, Wolf-Brandstetter C, Zerweck J, Wenninger F, Gbureck U, Groll J, et al. Electrochemically assisted deposition of strontium modified magnesium phosphate on titanium surfaces. Mater Sci Eng C Mater Biol Appl 2016;67:65–71. https://doi.org/10.1016/j.msec.2016.04.102.Search in Google Scholar PubMed

22. Pors Nielsen S. The biological role of strontium. Bone 2004;35:583–8. https://doi.org/10.1016/j.bone.2004.04.026.Search in Google Scholar PubMed

23. Burlet N, Reginster JY. Strontium ranelate: the first dual acting treatment for postmenopausal osteoporosis. Clin Orthop Relat Res 2006;443:55–60. https://doi.org/10.1097/01.blo.0000200247.27253.e9.Search in Google Scholar PubMed

24. Marie PJ, Felsenberg D, Brandi ML. How strontium ranelate, via opposite effects on bone resorption and formation, prevents osteoporosis. Osteoporos Int 2011;22:1659–67. https://doi.org/10.1007/s00198-010-1369-0.Search in Google Scholar PubMed

25. Marie PJ, Ammann P, Boivin G, Rey C. Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int 2001;69:121–9. https://doi.org/10.1007/s002230010055.Search in Google Scholar PubMed

26. Canalis E. The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone 1996;18:517–23. https://doi.org/10.1016/8756-3282(96)00080-4.Search in Google Scholar PubMed

27. Baron R, Tsouderos Y. In vitro effects of S12911-2 on osteoclast function and bone marrow macrophage differentiation. Eur J Pharmacol 2002;450:11–7. https://doi.org/10.1016/s0014-2999(02)02040-x.Search in Google Scholar PubMed

28. Chattopadhyay N, Quinn SJ, Kifor O, Ye C, Brown EM. The calcium-sensing receptor (CaR) is involved in strontium ranelate-induced osteoblast proliferation. Biochem Pharmacol 2007;74:438–47. https://doi.org/10.1016/j.bcp.2007.04.020.Search in Google Scholar PubMed

29. Marie PJ. The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone 2010;46:571–6. https://doi.org/10.1016/j.bone.2009.07.082.Search in Google Scholar PubMed

30. Choudhary S, Halbout P, Alander C, Raisz L, Pilbeam C. Strontium ranelate promotes osteoblastic differentiation and mineralization of murine bone marrow stromal cells: Involvement of prostaglandins. J Bone Miner Res 2007;22:1002–10. https://doi.org/10.1359/jbmr.070321.Search in Google Scholar PubMed

31. Hurtel-Lemaire AS, Mentaverri R, Caudrillier A, Cournarie F, Wattel A, Kamel S, et al. The calcium-sensing receptor is involved in strontium ranelate-induced osteoclast apoptosis. New insights into the associated signaling pathways. J Biol Chem 2009;284:575–84. https://doi.org/10.1074/jbc.M801668200.Search in Google Scholar PubMed

32. Bakker AD, Zandieh-Doulabi B, Klein-Nulend J. Strontium ranelate affects signaling from mechanically-stimulated osteocytes towards osteoclasts and osteoblasts. Bone 2013;53:112–9. https://doi.org/10.1016/j.bone.2012.11.044.Search in Google Scholar PubMed

33. Grynpas MD, Marie PJ. Effects of low doses of strontium on bone quality and quantity in rats. Bone 1990;11:313–9. https://doi.org/10.1016/8756-3282(90)90086-e.Search in Google Scholar PubMed

34. Verberckmoes SC, De Broe ME, D'Haese PC. Dose-dependent effects of strontium on osteoblast function and mineralization. Kidney Int 2003;64:534–43. https://doi.org/10.1046/j.1523-1755.2003.00123.x.Search in Google Scholar PubMed

35. Li C, Paris O, Siegel S, Roschger P, Paschalis EP, Klaushofer K, et al. Strontium is incorporated into mineral crystals only in newly formed bone during strontium ranelate treatment. J Bone Miner Res 2010;25:968–75. https://doi.org/10.1359/jbmr.091038.Search in Google Scholar PubMed

36. Schumacher M, Gelinsky M. Strontium modified calcium phosphate cements – approaches towards targeted stimulation of bone turnover. J Mater Chem B 2015;3:4626–40. https://doi.org/10.1039/C5TB00654F.Search in Google Scholar

37. Luo X, Barbieri D, Zhang Y, Yan Y, Bruijn JD, Yuan H. Strontium-containing apatite/poly lactide composites favoring osteogenic differentiation and in vivo bone formation. ACS Biomater Sci Eng 2015;1:85–93. https://doi.org/10.1021/ab500005e.Search in Google Scholar

38. Janckila AJ, Takahashi K, Sun SZ, Yam LT. Naphthol-ASBI phosphate as a preferred substrate for tartrate-resistant acid phosphatase isoform 5b. J Bone Miner Res 2001;16:788–93. https://doi.org/10.1359/jbmr.2001.16.4.788.Search in Google Scholar PubMed

39. Collin-Osdoby P, Yu X, Zheng H, Osdoby P. RANKL-mediated osteoclast formation from murine RAW 264.7 cells. Methods Mol Med 2003;80:153–66. https://doi.org/10.1007/978-1-61779-415-5_13.Search in Google Scholar PubMed

40. Pang M, Martinez AF, Jacobs J, Balkan W, Troen BR. RANK ligand and interferon gamma differentially regulate cathepsin gene expression in pre-osteoclastic cells. Biochem Biophys Res Commun 2005;328:756–63. https://doi.org/10.1016/j.bbrc.2004.12.005.Search in Google Scholar PubMed

41. Ma T, Samanna V, Chellaiah MA. Dramatic inhibition of osteoclast sealing ring formation and bone resorption in vitro by a WASP-peptide containing pTyr294 amino acid. J Mol Signal 2008;3:4. https://doi.org/10.1186/1750-2187-3-4.Search in Google Scholar PubMed PubMed Central

42. Andersson GN, Marks SC. Tartrate-resistant acid ATPase as a cytochemical marker for osteoclasts. J Histochem Cytochem 1989;37:115–7. https://doi.org/10.1177/37.1.2461980.Search in Google Scholar PubMed

43. Matsumoto M, Kogawa M, Wada S, Takayanagi H, Tsujimoto M, Katayama S, et al. Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1. J Biol Chem 2004;279:45969–79. https://doi.org/10.1074/jbc.M408795200.Search in Google Scholar PubMed

44. Pang M, Rodríguez-Gonzalez M, Hernandez M, Recinos CC, Seldeen KL, Troen BR. AP-1 and Mitf interact with NFATc1 to stimulate cathepsin K promoter activity in osteoclast precursors. J Cell Biochem 2019;120:12382–92. https://doi.org/10.1002/jcb.28504.Search in Google Scholar PubMed

45. Kanter B, Vikman A, Brückner T, Schamel M, Gbureck U, Ignatius A. Bone regeneration capacity of magnesium phosphate cements in a large animal model. Acta Biomater 2018;69:352–61. https://doi.org/10.1016/j.actbio.2018.01.035.Search in Google Scholar PubMed

46. Buache E, Velard F, Bauden E, Guillaume C, Jallot E, Nedelec JM, et al. Effect of strontium-substituted biphasic calcium phosphate on inflammatory mediators production by human monocytes. Acta Biomater 2012;8:3113–9. https://doi.org/10.1016/j.actbio.2012.04.045.Search in Google Scholar PubMed

47. Arnett TR, Orriss IR. Metabolic properties of the osteoclast. Bone 2018;115:25–30. https://doi.org/10.1016/j.bone.2017.12.021.Search in Google Scholar PubMed

48. Peng S, Liu XS, Huang S, Li Z, Pan H, Zhen W, et al. The cross-talk between osteoclasts and osteoblasts in response to strontium treatment: Involvement of osteoprotegerin. Bone 2011;49:1290–8. https://doi.org/10.1016/j.bone.2011.08.031.Search in Google Scholar PubMed

49. Saidak Z, Marie PJ. Strontium signaling: Molecular mechanisms and therapeutic implications in osteoporosis. Pharmacol Ther 2012;36:216–26. https://doi.org/10.1016/j.pharmthera.2012.07.009.Search in Google Scholar PubMed

50. Wornham DP, Hajjawi MO, Orriss IR, Arnett TR. Strontium potently inhibits mineralisation in bone-forming primary rat osteoblast cultures and reduces numbers of osteoclasts in mouse marrow cultures. Osteoporos Int 2014;25:2477–84. https://doi.org/10.1007/s00198-014-2791-5.Search in Google Scholar PubMed PubMed Central

51. Yang L, Perez-Amodio S, Barrère-de Groot FYF, Everts V, van Blitterswijk CA, Habibovic P. The effects of inorganic additives to calcium phosphate on in vitro behavior of osteoblasts and osteoclasts. Biomaterials 2010;31:2976–89. https://doi.org/10.1016/j.biomaterials.2010.01.002.Search in Google Scholar PubMed

Received: 2019-10-10
Accepted: 2020-01-31
Published Online: 2020-05-26
Published in Print: 2020-10-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/bmt-2019-0265/html
Scroll to top button