Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

The Advances of the Structure and Function of Indoleamine 2, 3- dioxygenase 1 and Its Inhibitors

Author(s): Huai-Chuan Duan, Lian-Xin Peng , Yi-Chen Hu, Qing Luo, Xin-Yu Liu, Xin Sun, Li Liang, Ya Gan, Wei Liu, Hua Wan, Hu-Bing Shi*, Gang Zhao* and Jian-Ping Hu*

Volume 21, Issue 10, 2020

Page: [1027 - 1039] Pages: 13

DOI: 10.2174/1389203721666200526122304

Price: $65

Abstract

Indoleamine 2, 3-dioxygenase 1 (IDO1) is the only rate-limiting enzyme outside the liver that catalyzes the oxidation and cracking of indole rings in the tryptophan along the kynurenine pathway (KP). The overactivation of IDO1 is closely related to the pathogenesis of various human immune and neurological diseases. As an important target for the treatment of many human serious diseases, including malignant tumors, the development of IDO1 inhibitors is of great practical significance. In this work, the structure and function of IDO1 both are summarized from the aspects of the signal pathway, catalytic mechanism, structural biology, and so on. Moreover, the current development status of IDO1 inhibitors is also systematically reviewed, which provides assistance for anti-cancer drug design based on the structure of receptors.

Keywords: Tumor, indoleamine 2, 3-dioxygenase 1, signal path, catalytic mechanism, structural biology, drug design.

Graphical Abstract
[1]
Lopes, M.B.S. The 2017 World Health Organization classification of tumors of the pituitary gland: a summary. Acta Neuropathol., 2017, 134(4), 521-535.
[http://dx.doi.org/10.1007/s00401-017-1769-8] [PMID: 28821944]
[2]
Marquardt, J.U.; Gomez-Quiroz, L.; Arreguin Camacho, L.O.; Pinna, F.; Lee, Y.H.; Kitade, M.; Domínguez, M.P.; Castven, D.; Breuhahn, K.; Conner, E.A.; Galle, P.R.; Andersen, J.B.; Factor, V.M.; Thorgeirsson, S.S. Curcumin effectively inhibits oncogenic NF-κB signaling and restrains stemness features in liver cancer. J. Hepatol., 2015, 63(3), 661-669.
[http://dx.doi.org/10.1016/j.jhep.2015.04.018] [PMID: 25937435]
[3]
Milroy, M.J. Cancer Statistics: Global and National; Quality Cancer Care, 2018. M
[4]
Cella, D.; Eton, D.; Hensing, T.A.; Masters, G.A.; Parasuraman, B. Relationship between symptom change, objective tumor measurements, and performance status during chemotherapy for advanced lung cancer. Clin. Lung Cancer, 2008, 9(1), 51-58.
[http://dx.doi.org/10.3816/CLC.2008.n.009] [PMID: 18282359]
[5]
Sun, X.; Liang, L.; Gu, J.; Zhuo, W.; Yan, X.; Xie, T.; Wu, Z.; Liu, X.; Gou, X.; Liu, W.; He, G.; Gan, Y.; Chang, S.; Shi, H.; Hu, J. Inhibition of programmed cell death protein ligand-1 (PD-L1) by benzyl ether derivatives: analyses of conformational change, molecular recognition and binding free energy. J. Biomol. Struct. Dyn., 2019, 37(18), 4801-4812.
[http://dx.doi.org/10.1080/07391102.2018.1563568] [PMID: 30593257]
[6]
Xie, T.; Wu, Z.; Gu, J.; Guo, R.; Yan, X.; Duan, H.; Liu, X.; Liu, W.; Liang, L.; Wan, H.; Luo, Y.; Tang, D.; Shi, H.; Hu, J. The global motion affecting electron transfer in Plasmodium falciparum type II NADH dehydrogenases: a novel non-competitive mechanism for quinoline ketone derivative inhibitors. Phys. Chem. Chem. Phys., 2019, 21(33), 18105-18118.
[http://dx.doi.org/10.1039/C9CP02645B] [PMID: 31396604]
[7]
Guo, P.; Huang, Z.L.; Yu, P.; Li, K. Trends in cancer mortality in China: an update. Ann. Oncol., 2012, 23(10), 2755-2762.
[http://dx.doi.org/10.1093/annonc/mds069] [PMID: 22492700]
[8]
Couzin-Frankel, J. Breakthrough of the year 2013. Cancer immunotherapy. Science, 2013, 342(6165), 1432-1433.
[http://dx.doi.org/10.1126/science.342.6165.1432] [PMID: 24357284]
[9]
Araki, K.; Turner, A.P.; Shaffer, V.O.; Gangappa, S.; Keller, S.A.; Bachmann, M.F.; Larsen, C.P.; Ahmed, R. mTOR regulates memory CD8 T-cell differentiation. Nature, 2009, 460(7251), 108-112.
[http://dx.doi.org/10.1038/nature08155] [PMID: 19543266]
[10]
Berezhnoy, A.; Castro, I.; Levay, A.; Malek, T.R.; Gilboa, E. Aptamer-targeted inhibition of mTOR in T cells enhances antitumor immunity. J. Clin. Invest., 2014, 124(1), 188-197.
[http://dx.doi.org/10.1172/JCI69856] [PMID: 24292708]
[11]
Sun, X.; Yan, X.; Zhuo, W.; Gu, J.; Zuo, K.; Liu, W.; Liang, L.; Gan, Y.; He, G.; Wan, H.; Gou, X.; Shi, H.; Hu, J. PD-L1 Nanobody Competitively Inhibits the Formation of the PD-1/PD-L1 Complex: Comparative Molecular Dynamics Simulations. Int. J. Mol. Sci., 2018, 19(7), 1984-2006.
[http://dx.doi.org/10.3390/ijms19071984] [PMID: 29986511]
[12]
Kamphorst, A.O.; Wieland, A.; Nasti, T.; Yang, S.; Zhang, R.; Barber, D.L.; Konieczny, B.T.; Daugherty, C.Z.; Koenig, L.; Yu, K.; Sica, G.L.; Sharpe, A.H.; Freeman, G.J.; Blazar, B.R.; Turka, L.A.; Owonikoko, T.K.; Pillai, R.N.; Ramalingam, S.S.; Araki, K.; Ahmed, R. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science, 2017, 355(6332), 1423-1427.
[http://dx.doi.org/10.1126/science.aaf0683] [PMID: 28280249]
[13]
Zong, S.; Gu, J.; Liu, T.; Guo, R.; Wu, M.; Yang, M. UQCRFS1N assembles mitochondrial respiratory complex-III into an asymmetric 21-subunit dimer. Protein Cell, 2018, 9(6), 586-591.
[http://dx.doi.org/10.1007/s13238-018-0515-x] [PMID: 2951193]
[14]
Rosenberg, S.A.; Restifo, N.P.; Yang, J.C.; Morgan, R.A.; Dudley, M.E. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat. Rev. Cancer, 2008, 8(4), 299-308.
[http://dx.doi.org/10.1038/nrc2355] [PMID: 18354418]
[15]
Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer, 2012, 12(4), 252-264.
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]
[16]
Yu, J.; Zhang, B.; Zhang, Y.; Xu, C.Q.; Zhuo, W.; Ge, J.; Li, J.; Gao, N.; Li, Y.; Yang, M. A binding-block ion selective mechanism revealed by a Na/K selective channel. Protein Cell, 2018, 9(7), 629-639.
[http://dx.doi.org/10.1007/s13238-017-0465-8] [PMID: 8921397]
[17]
Badawy, A.A. The tryptophan utilization concept in pregnancy. Obstet. Gynecol. Sci., 2014, 57(4), 249-259.
[http://dx.doi.org/10.5468/ogs.2014.57.4.249] [PMID: 25105097]
[18]
Prendergast, G.C.; Smith, C.; Thomas, S.; Mandik-Nayak, L.; Laury-Kleintop, L.; Metz, R.; Muller, A.J. Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer. Cancer Immunol. Immunother., 2014, 63(7), 721-735.
[http://dx.doi.org/10.1007/s00262-014-1549-4] [PMID: 24711084]
[19]
Ball, H.J.; Jusof, F.F.; Bakmiwewa, S.M.; Hunt, N.H.; Yuasa, H.J. Tryptophan-catabolizing enzymes - party of three. Front. Immunol., 2014, 5, 485.
[http://dx.doi.org/10.3389/fimmu.2014.00485] [PMID: 25346733]
[20]
Yamazaki, F.; Kuroiwa, T.; Takikawa, O.; Kido, R. Human indolylamine 2,3-dioxygenase. Its tissue distribution, and characterization of the placental enzyme. Biochem. J., 1985, 230(3), 635-638.
[http://dx.doi.org/10.1042/bj2300635] [PMID: 877502]
[21]
Bakmiwewa, S.M.; Fatokun, A.A.; Tran, A.; Payne, R.J.; Hunt, N.H.; Ball, H.J. Identification of selective inhibitors of indoleamine 2,3-dioxygenase 2. Bioorg. Med. Chem. Lett., 2012, 22(24), 7641-7646.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.010] [PMID: 23122865]
[22]
Yuasa, H.J.; Ball, H.J. Ho, Y.F.; Austin, C.J.D.; Whittington, C.M.; Belov, K.; Maghzal, G.J.; Jermiin, L.S.; Hunt, N.H. Characterization and evolution of vertebrate indoleamine 2, 3-dioxygenases IDOs from monotremes and marsupials. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2009, 153(2), 137-144.
[http://dx.doi.org/10.1016/j.cbpb.2009.02.002]
[23]
Myint, A.M.; Kim, Y.K. Network beyond IDO in psychiatric disorders: revisiting neurodegeneration hypothesis. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2014, 48(1433), 304-313.
[http://dx.doi.org/10.1016/j.pnpbp.2013.08.008] [PMID: 24184687]
[24]
Lopresti, A.L.; Maker, G.L.; Hood, S.D.; Drummond, P.D. A review of peripheral biomarkers in major depression: the potential of inflammatory and oxidative stress biomarkers. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2014, 48(1433), 102-111.
[http://dx.doi.org/10.1016/j.pnpbp.2013.09.017] [PMID: 24104186]
[25]
Salazar, A.; Gonzalez-Rivera, B.L.; Redus, L.; Parrott, J.M.; O’Connor, J.C. Indoleamine 2,3-dioxygenase mediates anhedonia and anxiety-like behaviors caused by peripheral lipopolysaccharide immune challenge. Horm. Behav., 2012, 62(3), 202-209.
[http://dx.doi.org/10.1016/j.yhbeh.2012.03.010] [PMID: 22504306]
[26]
Yue, E.W.; Douty, B.; Wayland, B.; Bower, M.; Liu, X.; Leffet, L.; Wang, Q.; Bowman, K.J.; Hansbury, M.J.; Liu, C.; Wei, M.; Li, Y.; Wynn, R.; Burn, T.C.; Koblish, H.K.; Fridman, J.F.; Metcalf, B.; Scherle, P.A.; Combs, A.P. Discovery of potent competitive inhibitors of indoleamine 2,3-dioxygenase with in vivo pharmacodynamic activity and efficacy in a mouse melanoma model. J. Med. Chem., 2009, 52(23), 7364-7367.
[http://dx.doi.org/10.1021/jm900518f] [PMID: 19507862]
[27]
Yang, S.; Li, X.; Hu, F.; Li, Y.; Yang, Y.; Yan, J.; Kuang, C.; Yang, Q. Discovery of tryptanthrin derivatives as potent inhibitors of indoleamine 2,3-dioxygenase with therapeutic activity in Lewis lung cancer (LLC) tumor-bearing mice. J. Med. Chem., 2013, 56(21), 8321-8331.
[http://dx.doi.org/10.1021/jm401195n] [PMID: 24099220]
[28]
Cady, S.G.; Sono, M. 1-Methyl-DL-tryptophan, beta-(3-benzofuranyl)-DL-alanine (the oxygen analog of tryptophan), and beta-[3-benzo(b)thienyl]-DL-alanine (the sulfur analog of tryptophan) are competitive inhibitors for indoleamine 2,3-dioxygenase. Arch. Biochem. Biophys., 1991, 291(2), 326-333.
[http://dx.doi.org/10.1016/0003-9861(91)90142-6] [PMID: 1952947]
[29]
Kumar, S.; Jaller, D.; Patel, B.; LaLonde, J.M.; DuHadaway, J.B.; Malachowski, W.P.; Prendergast, G.C.; Muller, A.J. Structure based development of phenylimidazole-derived inhibitors of indoleamine 2,3-dioxygenase. J. Med. Chem., 2008, 51(16), 4968-4977.
[http://dx.doi.org/10.1021/jm800512z] [PMID: 18665584]
[30]
Barney, B.M.; Schaab, M.R.; LoBrutto, R.; Francisco, W.A. Evidence for a new metal in a known active site: purification and characterization of an iron-containing quercetin 2,3-dioxygenase from Bacillus subtilis. Protein Expr. Purif., 2004, 35(1), 131-141.
[http://dx.doi.org/10.1016/j.pep.2004.01.005] [PMID: 15039076]
[31]
Tojo, S.; Kohno, T.; Tanaka, T.; Kamioka, S.; Ota, Y.; Ishii, T.; Kamimoto, K.; Asano, S.; Isobe, Y. Crystal structures and structure-activity relationships of imidazothiazole derivatives as IDO1 inhibitors. ACS Med. Chem. Lett., 2014, 5(10), 1119-1123.
[http://dx.doi.org/10.1021/ml500247w] [PMID: 25313323]
[32]
Peng, Y.H.; Ueng, S.H.; Tseng, C.T.; Hung, M-S.; Song, J-S.; Wu, J-S.; Liao, F-Y.; Fan, Y-S.; Wu, M-H.; Hsiao, W-C.; Hsueh, C-C.; Lin, S-Y.; Cheng, C-Y.; Tu, C-H.; Lee, L-C.; Cheng, M-F.; Shia, K-S.; Shih, C.; Wu, S-Y. Important Hydrogen Bond Networks in Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitor Design Revealed by Crystal Structures of Imidazoleisoindole Derivatives with IDO1. J. Med. Chem., 2016, 59(1), 282-293.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01390] [PMID: 26642377]
[33]
Lakhani, S.R.; Ashworth, A. Microarray and histopathological analysis of tumours: the future and the past? Nat. Rev. Cancer, 2001, 1(2), 151-157.
[http://dx.doi.org/10.1038/35101087] [PMID: 11905806]
[34]
Schreiber, R.D.; Old, L.J.; Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science, 2011, 331(6024), 1565-1570.
[http://dx.doi.org/10.1126/science.1203486] [PMID: 21436444]
[35]
Uyttenhove, C.; Pilotte, L.; Théate, I.; Stroobant, V.; Colau, D.; Parmentier, N.; Boon, T.; Van den Eynde, B.J. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med., 2003, 9(10), 1269-1274.
[http://dx.doi.org/10.1038/nm934] [PMID: 14502282]
[36]
Xie, Q.; Wang, L.; Zhu, B.; Wang, Y.; Gu, J.; Chen, Z. The expression and significance of indoleamine -2,3 -dioxygenase in non-small cell lung cancer cell. Zhongguo Fei Ai Za Zhi, 2008, 11(1), 115-119.
[PMID: 20727279]
[37]
Hill, M.; Tanguy-Royer, S. Royer. P.; Chauveau, C.; Asghar, K.; Tesson, L.; Lavainne, F.; Rémy, S.; Brion, R.; Hubert, F.-X.; Heslan, M.; Rimbert, M.; Berthelot, L.; Moffett, J.R.; Josien, R.; Grégoire, M.; Anegon, I. IDO expands human CD4+CD25high regulatory T cells by promoting maturation of LPS-treated dendritic cells. Eur. J. Immunol., 2007, 37(11), 3054-3062.
[http://dx.doi.org/10.1002/eji.200636704] [PMID: 17948274]
[38]
Curti, A.; Pandolfi, S.; Valzasina, B.; Aluigi, M.; Isidori, A.; Ferri, E.; Salvestrini, V.; Bonanno, G.; Rutella, S.; Durelli, I.; Horenstein, A.L.; Fiore, F.; Massaia, M.; Colombo, M.P.; Baccarani, M.; Lemoli, R.M. Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25- into CD25+ T regulatory cells. Blood, 2007, 109(7), 2871-2877.
[http://dx.doi.org/10.1182/blood-2006-07-036863] [PMID: 17164341]
[39]
Chang, M.Y.; Smith, C.; DuHadaway, J.B.; Pyle, J.R.; Boulden, J.; Soler, A.S.; Muller, A.J.; Laury-Kleintop, L.D.; Prendergast, G.C. Cardiac and gastrointestinal liabilities caused by deficiency in the immune modulatory enzyme indoleamine 2,3-dioxygenase. Cancer Biol. Ther., 2011, 12(12), 1050-1058.
[http://dx.doi.org/10.4161/cbt.12.12.18142] [PMID: 22157149]
[40]
Frumento, G.; Rotondo, R.; Tonetti, M.; Damonte, G.; Benatti, U.; Ferrara, G.B. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J. Exp. Med., 2002, 196(4), 459-568.
[http://dx.doi.org/10.1084/jem.20020121] [PMID: 12186838]
[41]
Spranger, S.; Spaapen, R.M.; Zha, Y.; Williams, J.; Meng, Y.; Ha, T.T.; Gajewski, T.F. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci. Transl. Med., 2013, 5(200)200ra116
[http://dx.doi.org/10.1126/scitranslmed.3006504] [PMID: 23986400]
[42]
Kim, J.M.; Rasmussen, J.P.; Rudensky, A.Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol., 2007, 8(2), 191-197.
[http://dx.doi.org/10.1038/ni1428] [PMID: 17136045]
[43]
Kilberg, M.S.; Shan, J.; Su, N. ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol. Metab., 2009, 20(9), 436-443.
[http://dx.doi.org/10.1016/j.tem.2009.05.008] [PMID: 19800252]
[44]
Munn, D.H.; Sharma, M.D.; Baban, B.; Harding, H.P.; Zhang, Y.; Ron, D.; Mellor, A.L. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity, 2005, 22(5), 633-642.
[http://dx.doi.org/10.1016/j.immuni.2005.03.013] [PMID: 15894280]
[45]
Colombo, M.P.; Piconese, S.; Colombo, M.P.; Piconese, S. Regulatory-T-cell inhibition versus depletion: the right choice in cancer immunotherapy. Nat. Rev. Cancer, 2007, 7(11), 880-887.
[http://dx.doi.org/10.1038/nrc2250] [PMID: 17957190]
[46]
Pallotta, M.T.; Orabona, C.; Volpi, C.; Vacca, C.; Belladonna, M.L.; Bianchi, R.; Servillo, G.; Brunacci, C.; Calvitti, M.; Bicciato, S.; Mazza, E.M.C.; Boon, L.; Grassi, F.; Fioretti, M.C.; Fallarino, F.; Puccetti, P.; Grohmann, U. Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat. Immunol., 2011, 12(9), 870-878.
[http://dx.doi.org/10.1038/ni.2077] [PMID: 21804557]
[47]
Fallarino, F.; Grohmann, U.; You, S.; McGrath, B.C.; Cavener, D.R.; Vacca, C.; Orabona, C.; Bianchi, R.; Belladonna, M.L.; Volpi, C.; Fioretti, M.C.; Puccetti, P. Tryptophan catabolism generates autoimmune-preventive regulatory T cells. Transpl. Immunol., 2006, 17(1), 58-60.
[http://dx.doi.org/10.1016/j.trim.2006.09.017] [PMID: 17157218]
[48]
Fallarino, F.; Grohmann, U.; You, S.; McGrath, B.C.; Cavener, D.R.; Vacca, C.; Orabona, C.; Bianchi, R.; Belladonna, M.L.; Volpi, C.; Santamaria, P.; Fioretti, M.C.; Puccetti, P. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J. Immunol., 2006, 176(11), 6752-6761.
[http://dx.doi.org/10.4049/jimmunol.176.11.6752] [PMID: 16709834]
[49]
Prendergast, G.C.; Malachowski, W.P.; DuHadaway, J.B.; Muller, A.J. Discovery of IDO1 inhibitors: from bench to bedside. Cancer Res., 2017, 77(24), 6795-6811.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2285] [PMID: 29247038]
[50]
Metz, R.; Rust, S.; Duhadaway, J.B.; Mautino, M.R.; Munn, D.H.; Vahanian, N.N.; Link, C.J.; Prendergast, G.C. IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: A novel IDO effector pathway targeted by D-1-methyl-tryptophan. OncoImmunology, 2012, 1(9), 1460-1468.
[http://dx.doi.org/10.4161/onci.21716] [PMID: 23264892]
[51]
Robinson, C.M.; Shirey, K.A.; Carlin, J.M. Synergistic transcriptional activation of indoleamine dioxygenase by IFN-γ and tumor necrosis factor-α. J. Interferon Cytokine Res., 2003, 23(8), 413-421.
[http://dx.doi.org/10.1089/107999003322277829] [PMID: 13678429]
[52]
Ohmori, Y.; Schreiber, R.D.; Hamilton, T.A. Synergy between interferon-gamma and tumor necrosis factor-alpha in transcriptional activation is mediated by cooperation between signal transducer and activator of transcription 1 and nuclear factor kappaB. J. Biol. Chem., 1997, 272(23), 14899-14907.
[http://dx.doi.org/10.1074/jbc.272.23.14899] [PMID: 9169460]
[53]
Wu, C.Y.; Hsieh, H.L.; Jou, M.J.; Yang, C.M. Involvement of p42/p44 MAPK, p38 MAPK, JNK and nuclear factor-kappa B in interleukin-1β-induced matrix metalloproteinase-9 expression in rat brain astrocytes. J. Neurochem., 2004, 90(6), 1477-1488.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02682.x] [PMID: 15341531]
[54]
He, Y.; Zhou, S.; Liu, H.; Shen, B.; Zhao, H.; Peng, K.; Wu, X. Indoleamine 2, 3-dioxgenase transfected mesenchymal stem cells induce kidney allograft tolerance by increasing the production and function of regulatory T cells. Transplantation, 2015, 99(9), 1829-1838.
[http://dx.doi.org/10.1097/TP.0000000000000856] [PMID: 26308414]
[55]
Selkoe, D.J. Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev., 2001, 81(2), 741-766.
[http://dx.doi.org/10.1152/physrev.2001.81.2.741] [PMID: 11274343]
[56]
Widner, B.; Leblhuber, F.; Walli, J.; Tilz, G.P.; Demel, U.; Fuchs, D. Tryptophan degradation and immune activation in Alzheimer’s disease. J. Neural Transm. (Vienna), 2000, 107(3), 343-353.
[http://dx.doi.org/10.1007/s007020050029] [PMID: 10821443]
[57]
Widner, B.; Leblhuber, F.; Walli, J.; Tilz, G.P.; Demel, U.; Fuchs, D. Degradation of tryptophan in neurodegenerative disorders [M]// Tryptophan, Serotonin, and Melatonin. Springer US 1999; pp. 133-8. https://doi.org/10.1007/978-1-4615-4709-9_19
[58]
Baran, H.; Jellinger, K.; Deecke, L. Kynurenine metabolism in Alzheimer’s disease. J. Neural Transm. (Vienna), 1999, 106(2), 165-181.
[http://dx.doi.org/10.1007/s007020050149] [PMID: 10226937]
[59]
Guillemin, G.J.; Brew, B.J.; Noonan, C.E.; Takikawa, O.; Cullen, K.M. Indoleamine 2,3 dioxygenase and quinolinic acid immunoreactivity in Alzheimer’s disease hippocampus. Neuropathol. Appl. Neurobiol., 2005, 31(4), 395-404.
[http://dx.doi.org/10.1111/j.1365-2990.2005.00655.x] [PMID: 16008823]
[60]
Guillemin, G.J.; Smith, D.G.; Smythe, G.A.; Armati, P.J.; Brew, B.J. Expression of the kynurenine pathway enzymes in human microglia and macrophages. Adv. Exp. Med. Biol., 2003, 527, 105-112.
[http://dx.doi.org/10.1007/978-1-4615-0135-0_12] [PMID: 15206722]
[61]
Guillemin, G.J.; Kerr, S.J.; Smythe, G.A.; Smith, D.g.; Kapoor, V.; Armati, P.J.; Croitoru, J.; Brew, B.J. Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J. Neurochem., 2001, 78(4), 842-853.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00498.x] [PMID: 11520905]
[62]
Guillemin, G.J.; Smythe, G.A.; Veas, L.A.; Takikawa, O.; Brew, B.J. A beta 1-42 induces production of quinolinic acid by human macrophages and microglia. Neuroreport, 2003, 14(18), 2311-2315.
[http://dx.doi.org/10.1097/00001756-200312190-00005] [PMID: 14663182]
[63]
Braidy, N.; Grant, R.; Adams, S.; Brew, B.J.; Guillemin, G.J. Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons. Neurotox. Res., 2009, 16(1), 77-86.
[http://dx.doi.org/10.1007/s12640-009-9051-z] [PMID: 19526301]
[64]
Kanai, M.; Funakoshi, H.; Takahashi, H.; Hayakawa, T.; Mizuno, S.; Matsumoto, K.; Nakamura, T. Tryptophan 2,3-dioxygenase is a key modulator of physiological neurogenesis and anxiety-related behavior in mice. Mol. Brain, 2009, 2(1), 8.
[http://dx.doi.org/10.1186/1756-6606-2-8] [PMID: 19323847]
[65]
Li, R.; Qin, L.; Wang, Y. Experimental study on preventive effect of traditional Chinese medicine replenishing recipe on acute oxygen toxicity caused by hyperbaric oxygen. Zhongguo Zhong Xi Yi Jie He Za Zhi, 1998, 18(10), 623-625.
[PMID: 11477850]
[66]
Anderson, I.M.; Ware, C.J.; da Roza Davis, J.M.; Cowen, P.J. Decreased 5-HT-mediated prolactin release in major depression. Br. J. Psychiatry, 1992, 160(3), 372-378.
[http://dx.doi.org/10.1192/bjp.160.3.372] [PMID: 1562864]
[67]
Mellor, A.L.; Munn, D.H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol., 2004, 4(10), 762-774.
[http://dx.doi.org/10.1038/nri1457] [PMID: 15459668]
[68]
Tomek, P.; Palmer, B.D.; Flanagan, J.U.; Sun, C.; Raven, E.L.; Ching, L.M. Discovery and evaluation of inhibitors to the immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1): Probing the active site-inhibitor interactions. Eur. J. Med. Chem., 2017, 126, 983-996.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.029] [PMID: 28011425]
[69]
Yu, L.L.; Zhang, Y.H.; Zhao, F.X. Expression of indoleamine 2,3-dioxygenase in pregnant mice correlates with CD4+CD25+Foxp3+ T regulatory cells. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(8), 1722-1728.
[PMID: 28485810]
[70]
Yee, C.; Bartoces, M.; Shahinian, V.; Fryzek, J.; Acquavella, J.; Schwartz, K.l. Androgen deprivation therapy and cataract incidence among elderly prostate cancer patients in the United States., Ann. Epidemiol.,2011, 21(3), 0-163.
[71]
Wang, Q.; Liu, D.; Song, P.; Zou, M.H. Deregulated tryptophan-kynurenine pathway is linked to inflammation, oxidative stress, and immune activation pathway in cardiovascular diseases. Front. Biosci., 2015, 20, 1116-1143.
[http://dx.doi.org/10.2741/4363]
[72]
Williams, R.O. Exploitation of the IDO Pathway in the Therapy of Rheumatoid Arthritis. Int. J. Tryptophan Res., 2013, 6(Suppl. 1), 67-73.
[http://dx.doi.org/10.4137/IJTR.S11737] [PMID: 23922504]
[73]
Seinstra, R.I.; Dettmer, K.; Michels, H.; Farina, F.; Krijnen, J.; Melki, R.; Buijsman, R.C.; Silva, M.R.; Thijssen, K.L.; Kema, I.P.; Neri, C.; Oefner, P.J.; Nollen, E.A.A. Delaying aging and the aging-associated decline in protein homeostasis by inhibition of tryptophan degradation. Proc. Natl. Acad. Sci. USA, 2012, 109(37), 14912-14917.
[http://dx.doi.org/10.1073/pnas.1203083109] [PMID: 22927396]
[74]
Habara-Ohkubo, A.; Takikawa, O.; Yoshida, R. Cloning and expression of a cDNA encoding mouse indoleamine 2,3-dioxygenase. Gene, 1991, 105(2), 221-227.
[http://dx.doi.org/10.1016/0378-1119(91)90154-4] [PMID: 1937018]
[75]
Sugimoto, H.; Oda, S.; Otsuki, T.; Hino, T.; Yoshida, T.; Shiro, Y. Crystal structure of human indoleamine 2,3-dioxygenase: catalytic mechanism of O2 incorporation by a heme-containing dioxygenase. Proc. Natl. Acad. Sci. USA, 2006, 103(8), 2611-2616.
[http://dx.doi.org/10.1073/pnas.0508996103] [PMID: 16477023]
[76]
Shimizu, T.; Nomiyama, S.; Hirata, F.; Hayaishi, O. Indoleamine 2,3-dioxygenase. Purification and some properties. J. Biol. Chem., 1978, 253(13), 4700-6. PMID: 26687
[77]
Basran, J.; Booth, E.S.; Lee, M.; Handa, S.; Raven, E.L. Analysis of Reaction Intermediates in Tryptophan 2,3-Dioxygenase: A Comparison with Indoleamine 2,3-Dioxygenase. Biochemistry, 2016, 55(49), 6743-6750.
[http://dx.doi.org/10.1021/acs.biochem.6b01005] [PMID: 27951658]
[78]
Moody, P.C.E.; Raven, E.L. The Nature and Reactivity of Ferryl Heme in Compounds I and II. Acc. Chem. Res., 2018, 51(2), 427-435.
[http://dx.doi.org/10.1021/acs.accounts.7b00463] [PMID: 29327921]
[79]
Sono, M.; Dawson, J.H. Extensive studies of the heme coordination structure of indoleamine 2,3-dioxygenase and of tryptophan binding with magnetic and natural circular dichroism and electron paramagnetic resonance spectroscopy. Biochim. Biophys. Acta, 1984, 789(2), 170-187.
[http://dx.doi.org/10.1016/0167-4838(84)90202-4] [PMID: 6089893]
[80]
Terentis, A.C.; Thomas, S.R.; Takikawa, O.; Littlejohn, T.K.; Truscott, R.J.W.; Armstrong, R.S.; Yeh, S-R.; Stocker, R. The heme environment of recombinant human indoleamine 2,3-dioxygenase. Structural properties and substrate-ligand interactions. J. Biol. Chem., 2002, 277(18), 15788-15794.
[http://dx.doi.org/10.1074/jbc.M200457200] [PMID: 11867636]
[81]
Yamamoto, S.; Hayaishi, O. Tryptophan pyrrolase of rabbit intestine. D- and L-tryptophan-cleaving enzyme or enzymes. J. Biol. Chem., 1967, 242(22), 5260-5266.
[PMID: 6065097]
[82]
Couture, M.; Yeh, S.R.; Wittenberg, B.A.; Ouellet, Y.; Rousseau, D.; Guertin, M. A cooperative oxygen-binding hemoglobin from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 1999, 96(20), 11223-11228.
[http://dx.doi.org/10.1073/pnas.96.20.11223] [PMID: 10500158]
[83]
Qian, S.; He, T.; Wang, W.; He, Y.; Man, Z.; Yang, L.; Li, G.; Wang, Z. Discovery and preliminary structure-activity relationship of 1H-indazoles with promising indoleamine-2,3-dioxygenase 1 (IDO1) inhibition properties. Bioorg. Med. Chem., 2016, 24(23), 6194-6205.
[http://dx.doi.org/10.1016/j.bmc.2016.10.003] [PMID: 27769672]
[84]
Muller, A.J.; DuHadaway, J.B.; Donover, P.S.; Sutanto-Ward, E.; Prendergast, G.C. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat. Med., 2005, 11(3), 312-319.
[http://dx.doi.org/10.1038/nm1196] [PMID: 15711557]
[85]
Ray, K. Colorectal cancer: Evading the immune response in metastasis. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(4), 191-1.
[http://dx.doi.org/10.1038/nrgastro.2018.18] [PMID: 29487420]
[86]
Smith, J.R.; Evans, K.J.; Wright, A.; Willows, R.D.; Jamie, J.F.; Griffith, R. Novel indoleamine 2,3-dioxygenase-1 inhibitors from a multistep in silico screen. Bioorg. Med. Chem., 2012, 20(3), 1354-1363.
[http://dx.doi.org/10.1016/j.bmc.2011.10.068] [PMID: 22112538]
[87]
Nayak, A.; Hao, Z.; Sadek, R.; Vahanian, N.; Ramsey, W.; Kennedy, E.; Mautino, M.; Link, C.; Bourbo, P.; Dobbins, R.; Adams, K.; Diamond, A.; Marshall, L.; Munn, D.H.; Janik, J.; and Khleif, S.N. A Phase I study of NLG919 for adult patients with recurrent advanced solid tumors. J. Immunother. Cancer, 2014, 2(Suppl. 3), 250.
[http://dx.doi.org/10.1186/2051-1426-2-S3-P250]
[88]
Wu, Y.; Xu, T.; Liu, J.; Ding, K.; Xu, J. Structural insights into the binding mechanism of IDO1 with hydroxylamidine based inhibitor INCB14943. Biochem. Biophys. Res. Commun., 2017, 487(2), 339-343.
[http://dx.doi.org/10.1016/j.bbrc.2017.04.061] [PMID: 28412361]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy