Skip to main content
Log in

QTL and eQTL mapping associated with host response to Candidatus Liberibacter asiaticus in citrandarins

  • Original Article
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

Huanglongbing (HLB) is a severe disease of citrus caused by the bacterium Candidatus Liberibacter. In America, the most common species is Candidatus Liberibacter asiaticus (CLas). In a previous study of the Citrus-HLB pathosystem, our group found differences in CLas multiplication in a population of hybrids obtained by hybridization between Citrus sunki Hort. Ex Tan. and Poncirus trifoliata (L.) Raf. cv. Rubidoux. The bacterial concentration was higher in C. sunki than in P. trifoliata. Thus, this study aims to map phenotypic (QTL) and gene expression (eQTL) data associated with host response to CLas in the linkage groups (LGs) of the previously constructed parental maps of C. sunki and P. trifoliata cv. Rubidoux. For the phenotypic analysis, we used a population of 79 F1 hybrids (termed citrandarins) between C. sunki and P. trifoliata. CLas and starch were quantified in the leaves of the plants two years after pathogen inoculation, allowing the classification of hybrids as resistant, tolerant, and susceptible. The expression of 14 candidate genes was measured in 72 hybrids of the population and used as expression data for the eQTL mapping. We located nine QTL and 52 eQTL in the C. sunki map and 17 QTL and 40 eQTL in the P. trifoliata map. The overlap of eQTL of the majority of genes with QTL from the phenotypic data indicates that the genes are related to the phenotype and are probably related to pathogen infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albrecht U, Bowman KD (2012) Transcriptional response of susceptible and tolerant citrus to infection with Candidatus Liberibacter asiaticus. Plant Science 185–186:118–30

    PubMed  Google Scholar 

  • Amaral LIV, Gaspar M, Costa PMF, Aidar MPM, Buckeridge MS (2007) A new rapid and sensitive enzymatic method for extraction and quantification of starch in plant material. Hoehnea 34:425–431

    Google Scholar 

  • Anderson JA, Chao S, Liu S (2007) Molecular breeding using a major QTL for Fusarium head blight resistance in wheat. Crop Science 47:112–119

    Google Scholar 

  • Aritua V, Achor D, Gmitter FG, Albrigo G, Wang N (2013) Transcriptional and microscopic analyses of citrus stem and root responses to Candidatus Liberibacter asiaticus infection. PLoS One 8:e73742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aryal K, McBride Z, Chen D, Xie J, Szymanski DB (2017) Analysis of protein complexes in Arabidopsis leaves using size exclusion chromatography and label-free protein correlation profiling. Journal of Proteomics 166:8–18

    CAS  PubMed  Google Scholar 

  • Asamizu E, Shimoda Y, Kouchi H, Tabata S, Sato S (2008) A positive regulatory role for LjERF1 in the nodulation process is revealed by systematic analysis of nodule-associated transcription factors of lotus japonicus. Plant Physiology 147:2030–2040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asins MJ, Bernet GP, Ruiz C, Cambra M, Guerri J, Carbonell EA (2004) QTL analysis of citrus tristeza virus-citradia interaction. Theoretical and Applied Genetics 108:603–611

    CAS  PubMed  Google Scholar 

  • Boava LP, Sagawa CH, Cristofani-Yaly M, Machado MA (2015) Incidence of ‘Candidatus Liberibacter asiaticus’-Infected Plants Among Citrandarins as Rootstock and Scion Under Field Conditions. Phytopathology 105:518–24

    CAS  PubMed  Google Scholar 

  • Boava LP, Cristofani-Yaly M, Machado MA (2017) Physiologic, Anatomic, and Gene Expression Changes in Citrus sunki, Poncirus trifoliata, and Their Hybrids After ‘Candidatus Liberibacter asiaticus’ Infection. Phytopathology 107:590–599

    CAS  PubMed  Google Scholar 

  • Boscariol-Camargo RL, Cristofani-Yaly M, Malosso A, Coletta-Filho HD, Machado MA (2010) Avaliação de diferentes genótipos de citros à infecção por Candidatus Liberibacter asiaticus, 31. Citrus Research & Technology, Cordeirópolis, pp 85–90

    Google Scholar 

  • Bové JM (2006) Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. Journal of Plant Pathology 88:7–37

    Google Scholar 

  • Brown GR, Bassoni DL, Gill GP, Fontana JR, Wheeler NC, Megraw RA, Davis MF, Sewell MM, Tuskan GA, Neale DB (2003) Identification of quantitative trait loci influencing wood property traits in loblolly pine (Pinus taeda L.). III. QTL verification and candidate gene mapping. Genetics 164:1537–1546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Budahn H, Peterka H, Mousa MA, Ding Y, Zhang S, Li J (2009) Molecular mapping in oil radish (Raphanus sativus L.) and QTL analysis of resistance against beet cyst nematode (Heterodera schachtii). Theoretical and Applied Genetics 118:775–782

    PubMed  Google Scholar 

  • Burchell B, Nebert DW, Nelson DR, Bock KW, Iyanagi T, Jansen PL, Lancet D, Mulder GJ, Chowdhury JR, Siest G (1991) The UDP glucuronosyltransferase gene superfamily: suggested nomenclature based on evolutionary divergence. DNA and Cell Biology 10:487–494

    CAS  PubMed  Google Scholar 

  • Cellier M, Privé G, Belouchi A, Kwan T, Rodrigues V, Chia W, Gros P (1995) Nramp defines a family of membrane proteins. Proceedings of the National Academy of Sciences of the United States of America 92:10089–10093

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter 11:113–116

    CAS  Google Scholar 

  • Chen L, Storey JD (2006) Relaxed significance criteria for linkage analysis. Genetics 173:2371–2381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cunnac S, Wilson A, Nuwer J, Kirik A, Baranage G, Mudgett MB (2007) A conserved carboxylesterase is a suppressor of AVRBST-elicited resistance in Arabidopsis. Plant Cell 19:688–705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curtolo M, Soratto TAT, Gazaffi R, Takita MA, Machado MA, Cristofani-Yaly M (2018) High-density linkage maps for Citrus sunki and Poncirus trifoliata using DArTseq markers. Tree Genetics Genomes 14:5

    Google Scholar 

  • Dalio RJD, Magalhães DM, Rodrigues CM, Arena GD, Oliveira TS, Souza-Neto RS, Picchi SC, Martins PMM, Santos PJC, Maximo HJ, Pacheco IS, De Souza AA, Machado MA (2017) PAMPs, PRRs, effectors and R-genes associated with citrus-pathogen interactions. Annals of Botany 119:749–774

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Spiegelaere W, Dern-Wieloch J, Weigel R, Schumacher V, Schorle H, Nettersheim D, Bergmann M, Brehm R, Kliesch S, Vandekerckhove L, Fink C (2015) Reference gene validation for RT-qPCR, a note on different available software packages. PLoS One 10:1–13

    Google Scholar 

  • Dinant S, Clark AM, Zhu Y, Vilaine F, Palauqui JC, Kusiak C, Thompson GA (2003) Diversity of the superfamily of phloem lectins (phloem protein 2) in angiosperms. Plant Physiology 131:114–28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst HA, Olsen AN, Skriver K, Larsen S, Leggio LL (2004) Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Reports 5:297–303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Etxeberria E, Gonzalez P, Achor D, Albrigo G (2009) Anatomical distribution of abnormally high levels of starch in HLB-affected Valencia orange trees. Physiological and Molecular Plant Pathology 74:76–83

    CAS  Google Scholar 

  • Fan J, Chen C, Brlansky RH, Gmitter FGJ, Li ZG (2010) Changes in carbohydrate metabolism in Citrus sinensis infected with ‘Candidatus Liberibacter asiaticus.’ Plant Pathology 59:1037–1043

  • Fan J, Chen X, Achor DS, Brlansk RH, Li Z-G, Gmitter FG Jr (2013) Differential anatomical responses of tolerant and susceptible citrus species to the infection of “Candidatus Liberibacter asiaticus.” Physiological and Molecular Plant Pathology 83:69–74

  • Ferro M, Salvi D, Brugière S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J, Rolland N (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Molecular amp: Cellular Proteomics 2:325–345

    CAS  Google Scholar 

  • Folimonova SY, Robertson CJ, Garnsey SM, Gowda S, Dawson WO (2009) Examination of the responses of different genotypes of citrus to huanglongbing (citrus greening) under different conditions. Phytopathology 99:1346–1354

    PubMed  Google Scholar 

  • Fu S, Shao J, Zhou C, Hartung JS (2016) Transcriptome analysis of sweet orange trees infected with ‘Candidatus Liberibacter asiaticus’ and two strains of Citrus Tristeza Virus. BMC Genomics 17:349

    PubMed  PubMed Central  Google Scholar 

  • Fundecitrus. Available at: http://www.fundecitrus.com.br/. Accessed on July 30, 2017

  • Gantulga D, Turan Y, Bevan DR, Esen A (2008) The Arabidopsis At1g45130 and At3g52840 genes encode β-galactosidases with activity toward cell wall polysaccharides. Phytochemistry 69:1661–1670

    CAS  PubMed  Google Scholar 

  • Gazaffi R, Margarido G, Pastina MM, Mollinari M, Garcia A (2014) A model for quantitative trait loci mapping, linkage phase, and segregation pattern estimation for a full-sib progeny. Tree Genetics Genomes 10:791–801

    Google Scholar 

  • Gion JM, Rech P, Grima-Pettenati J, Verhaegen D, Plomion C (2000) Mapping candidate genes in Eucalyptus with emphasis on lignification genes. Molecular Breeding 6:441–449

    CAS  Google Scholar 

  • Grattapaglia D (2004) Integrating genomics into Eucalyptus breeding. Genetics and Molecular Research 3:369–379

    CAS  PubMed  Google Scholar 

  • Hall DG, George J, Lapointe SL (2015) Further investigations on colonization of Poncirus trifoliata by the Asian citrus psyllid - Science Direct. Crop Protection 72:112–118

    Google Scholar 

  • Huang M, Roose ML, Yu Q, Du D, Yu Y, Zhang Y, Deng Z, Stover E, Gmitter FG (2018) Construction of high-density genetic maps and detection of QTLs associated with Huanglongbing tolerance in citrus. Frontiers in Plant Science 9:1694

    PubMed  PubMed Central  Google Scholar 

  • Ishikawa K, Nakatani H, Katsuya Y, Fukazawa C (2007) Kinetic and structural analysis of enzyme sliding on a substrate: multiple attack in β-Amylase. Biochemistry 46:792–798

    CAS  PubMed  Google Scholar 

  • Jansen RC, Nap JP (2001) Genetical genomics: The added value from segregation. Trends in Genetics 17:388–391

    CAS  PubMed  Google Scholar 

  • Kim JS, Sagaram US, Burns JK, Li JL, Wang N (2009) Response of sweet orange (Citrus sinensis) to ‘Candidatus Liberibacter asiaticus’ infection: microscopy and microarray analyses. Phytopathology 99:50–57

    PubMed  Google Scholar 

  • Kirst M, Basten CJ, Myburg AA, Zeng ZB, Sederoff RR (2005) Genetic architecture of transcript-level variation in differentiating xylem of a eucalyptus hybrid. Genetics 169:2295–2303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koh EJ, Zhou L, Williams DS, Park J, Ding N, Duan YP, Kang BH (2012) Callose deposition in the phloem plasmodesmata and inhibition of phloem transport in citrus leaves infected with “Candidatus Liberibacter asiaticus”. Protoplasma 249:687–697

  • Li W, Hartung JS, Levy L (2006) Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. Journal of Microbiological Methods 66:104–115

    CAS  PubMed  Google Scholar 

  • Lima RPM, Curtolo M, Merfa MV, Cristofani-Yaly M, Machado MA (2018) QTL and eQTL mapping related to citrandarins’ resistance to citrus gummosis disease. BMC Genomics 19:516

    PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland

    Google Scholar 

  • Machado MA, Locali-Fabris EC, Coletta-Filho HD (2010) Candidatus Liberibacter spp., agentes do huanglongbing dos citros. Citrus Research Technology 31:25–35

    Google Scholar 

  • Mafra V, Kubo KS, Alves-Ferreira M, Ribeiro-Alves M, Stuart RM, Boava LP, Rodrigues CM, Machado MA (2012) Reference Genes for Accurate Transcript normalization in Citrus Genotypes under Different Experimental Conditions. PloS one 7 (2):1–11

  • Mafra V, Martins PK, Francisco CS, Ribeiro-Alves M, Freitas-Astúa J, Machado MA (2013) Candidatus Liberibacter americanus induces significant reprogramming of the transcriptome of the susceptible citrus genotype. BMC Genomics 14:247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marengo S (2009) Mapeamento genético de tangerina Sunki e Poncirus trifoliata para resistência ao Huanglongbing (greening) dos citros. 75p. Online: http://www.dominiopublico.gov.br/pesquisa/DetalheObraForm.do?select_action=&co_obra=146568

  • Margarido GRA, Souza AP, Garcia AAF (2007) OneMap software for genetic mapping in outcrossing species. Hereditas 144:78–79

    CAS  PubMed  Google Scholar 

  • McLennan AG (2006) The Nudix hydrolase superfamily. Cellular and Molecular Life Sciences 63:123

    CAS  PubMed  Google Scholar 

  • Morgan JK, Shatters RG, Stover E, Duan YP, Moore GA, Powell CA, Jarra-Cavieres A, Clark S (2014) Clues into the metagenome of Huanglongbing infected Citrus by analysis of ancillary sequences from Ion Torrent whole genome Candidatus Liberibacter asiaticus sequencing. Journal of Citrus Pathology, 1. https://escholarship.org/uc/item/4b22q45m

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8:4321–4325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Philippe F, Pelloux J, Rayon C (2017) Plant pectin acetylesterase structure and function: new insights from bioinformatic analysis. BMC Genomics 18:456

    PubMed  PubMed Central  Google Scholar 

  • Porto BN, Magalhaes PC, Campos NA, Alves JD, Magalhães MM (2010) Otimização de protocolos de extração de RNA em diferentes tecidos de milho. Revista Brasileira de Milho e Sorgo 9:189–200

    Google Scholar 

  • Raiol-Junior LL, Baia ADB, Luiz FQBF, Fassini CG, Marques VV, Lopes SA (2017) Improvement in the Excised Citrus Leaf Assay to Investigate Inoculation of ‘Candidatus Liberibacter asiaticus’ by the Asian Citrus Psyllid Diaphorina citri. Plant Disease 101:409–413

    CAS  PubMed  Google Scholar 

  • Rebai A (1997) Comparison of methods for regression interval mapping inQTL analysis with non-normal traits. Genetics Research 69:69–74

    Google Scholar 

  • Richardson ML, Hall DG (2014) Resistance of Poncirus and Citrus x Poncirus Germplasm to the Asian Citrus Psyllid. Journal of Citrus Pathology 1. https://escholarship.org/uc/item/73z3s5hx

  • Rigano LA, Malamud F, Orce IG, Filippone MP, Marano MR, Amaral AMd, Castagnaro AP, Vojnov AA (2014) Rapid and sensitive detection of Candidatus Liberibacter asiaticus by loop mediated isothermal amplification combined with a lateral flow dipstick. BMC Microbiology 14:86

    PubMed  PubMed Central  Google Scholar 

  • Rosa GJDM (2007) Delineamento de experimentos em genética genômica. Revista Brasileira de Zootecnia 36:211–218

    Google Scholar 

  • Saurin W, Hofnung M, Dassa E (1999) Getting in or out: early segregation between importers and exporters in the evolution of ATP-Binding Cassette (ABC) transporters. Journal of Molecular Evolution 48:22–41

    CAS  PubMed  Google Scholar 

  • Shi C, Uzarowska A, Ouzunova M, Landbeck M, Wenzel G, Lübberstedt T (2007) Identification of candidate genes associated with cell wall digestibility and eQTL (expression quantitative trait loci) analysis in a Flint × Flint maize recombinant inbred line population. BMC Genomics 8:22

    PubMed  PubMed Central  Google Scholar 

  • Sugiyama A, Omura M, Shimada T, Fujii H, Endo T, Shimizu T, Nesumi H, Nonaka K, Ikoma Y (2014) Expression quantitative trait loci analysis of carotenoid metabolism-related genes in citrus. Journal of the Japanese Society for Horticultural Science 83:32–43

    CAS  Google Scholar 

  • Teixeira DC, Saillard C, Couture C, Martins EC, Wulff NA, Eveillard-Jagoueix S, Yamamoto PT, Ayres AJ, Bove JM (2008) Distribution and quantification of Candidatus Liberibacter americanus, agent of huanglongbing disease of citrus in Sao Paulo State, Brasil, in leaves of an affected sweet orange tree as determined by PCR. Molecular and Cellular Probes 22:139–150

    CAS  PubMed  Google Scholar 

  • Viñuela A, Snoek LB, Riksen JAG, Kammenga JE (2012) Aging Uncouples Heritability and Expression-QTL in Caenorhabditis elegans. G3: Genes, Genomes, Genetics 2:597–605

    Google Scholar 

  • Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era - concepts and misconceptions. Nature Reviews Genetics 9:255–266

    CAS  PubMed  Google Scholar 

  • Wang Z, Yin Y, Hu H, Yuan Q, Peng G, Xia Y (2006) Development and application of molecular based diagnosis for ‘Candidatus Liberibacter asiaticus’, the causal pathogen of citrus huanglongbing. Plant Pathology 55:630–638

  • Wang N, Trivedi P (2013) Citrus Huanglongbing: A newly relevant disease presents unprecedented challenges. Phytopathology 103(7):652–65

  • Wang Y, Han Y, Teng W, Zhao X, Li Y, Wu L, Li D, Li W (2014) Expression quantitative trait loci infer the regulation of isoflavone accumulation in soybean (Glycine max L. Merr.) seed. BMC Genomics 15:680

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhou L, Yu X, Stover E, Luo F, Duan Y (2016) Transcriptome profiling of Huanglongbing tolerant and susceptible citrus plants reveals the role of basal resistance in HLB tolerance. Frontiers in Plant Science 7:933

    PubMed  PubMed Central  Google Scholar 

  • Wang N, Pierson EA, Setubal JC, Xu J, Levy JG, Zhang Y, Li J, Rangel LT Jr (2017) The Candidatus liberibacter–host interface: Insights into pathogenesis mechanisms and disease control. Annual Review of Phytopathology 55:451–482

    CAS  PubMed  Google Scholar 

  • West MA, Kim K, Kliebenstein DJ, van Leeuwen H, Michelmore RW, Doerge RW, St Clair DA (2007) Global eQTL mapping reveals the complex genetic architecture of transcript-level variation in Arabidopsis. Genetics 175:1441–1450

  • Yan AO, Zhi-qiu HU, Zai-xiang TANG, Xue-feng WANG, Chen-wu XU (2009) General method for QTL mapping in multiple related populations derived from multiple parents. Rice Science 16:45–50

    Google Scholar 

  • Young ND (1994) Construction a plant genetic linkage map with DNA markers. In: Philips PL, Vasil IK (eds) DNA-based markers in plants. Kluwer Academic Publisher, Dordrecht, pp 39–57

    Google Scholar 

  • Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proceedings of the National Academy of Sciences of the United States of America 90:10972–6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zagnitko O, Rodionova I, Osterman A, Godzik A (2011) The FGGY Carbohydrate Kinase Family: Insights into the evolution of functional specificities. PLoS Computational Biology 7:e1002318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. Journal of Computational Biology 12:1047–1064

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong Y, Cheng C, Jiang N, Jiang B, Zhang Y, Wu B et al (2015) Comparative transcriptome and iTRAQ proteome analyses of citrus root responses to Candidatus Liberibacter asiaticus infection. PLoS One 10:e0126973

Download references

Acknowledgements

This work was performed with the financial support of the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Processes nº 2011/18605-0 and 2018/00133-4) and the Instituto Nacional de Ciência e Tecnologia (INCT) de Genômica para Melhoramento de Citros (Processes: CNPq 465440/2014-2 and Fapesp 2014/50880-0). The authors Tatiany Aparecida Teixeira Soratto and Maiara Curtolo are recipient of research fellowships from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) and FAPESP 2016/22133-0, respectively.

Author information

Authors and Affiliations

Authors

Contributions

MCY and MAM planned and supervised the study. TAST and MCY contributed to the design and execution of the project. TAST, MC, RG and SM performed the phenotype evaluation and the QTL and eQTL mapping analysis. TAST, MC and ALD participated in extraction of plant RNA, cDNA synthesis and validation of genes by RT-qPCR. RPML and TAST performed gene expression analysis. RPML, MCY, MC and TAST drafted and critically revised the manuscript and provided intellectual input. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mariângela Cristofani-Yaly.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soratto, T.A.T., Curtolo, M., Marengo, S. et al. QTL and eQTL mapping associated with host response to Candidatus Liberibacter asiaticus in citrandarins. Trop. plant pathol. 45, 626–645 (2020). https://doi.org/10.1007/s40858-020-00372-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-020-00372-7

Keywords

Navigation