Skip to main content
Log in

Modeling of free dendritic growth in a gravity environment by lattice Boltzmann method

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

A two-dimensional model is developed to simulate dendrite growth and movement in a gravity environment. The model combines the features of cellular automaton and lattice Boltzmann methods. Two sets of distribution functions are adopted to calculate the melt flow and solute transport simultaneously. The fluid force acting on the dendrite is calculated by extending the basic flow simulation at the solid-liquid interface. Incorporating the force interaction between melt flow and solidified dendrite into the algorithm for dendritic growth, the movement of a growing dendrite in the flowing melt can be simulated. After model validation, the coupled model has been applied to simulate the evolution and motion of an individual nucleus that grows into a dendrite in the presence of gravitational force. It is found that the dendrite growth is strongly influenced by the fluid flow, producing an asymmetrical morphology that the dendrite grows faster in the upstream direction, whereas largely slower in the downstream direction. The growth process of dendritic side-branches is modeled in a high settling velocity without any artificial noise introduced. The melt flow triggered by the dendrite motion enhances the growth of the dendrite in the downward direction, which in turn influences the subsequent dendritic translation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y.H. Qian, D. D'Humibres, P. Lallemand, Europhys. Lett. 17, 479 (1992)

    Article  ADS  Google Scholar 

  2. X.Y. He, L.-S. Luo, Phys. Rev. E 56, 6811 (1997)

    Article  ADS  Google Scholar 

  3. P. Lallemand, L.-S. Luo, Phys. Rev. E 68, 036706 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  4. B. Deng, B.C. Shi, G.C. Wang, Chin. Phys. Lett. 22, 267 (2005)

    Article  ADS  Google Scholar 

  5. W. Miller, I. Rasin, F. Pimentel, J. Cryst. Growth 266, 283 (2004)

    Article  ADS  Google Scholar 

  6. D. Medvedev, T. Fischaleck, K. Kassner, J. Cryst. Growth 303, 69 (2007)

    Article  ADS  Google Scholar 

  7. D.K. Sun, M.F. Zhu, S.Y. Pan, D. Raabe, Acta Mater. 57, 1755 (2009)

    Article  Google Scholar 

  8. D.K. Sun, M.F. Zhu, S.Y. Pan, D. Raabe, Int. J. Mod. Phys. B 23, 1609 (2009)

    Article  ADS  Google Scholar 

  9. G. Lesoult, Mater. Sci. Eng. A 413, 19 (2005)

    Article  Google Scholar 

  10. A. Badillo, D. Ceynar, C. Beckermann, J. Cryst. Growth 309, 197 (2007)

    Article  ADS  Google Scholar 

  11. D.-Q. Minh, A. Gustav, J. Comput. Phys. 227, 1772 (2008)

    Article  MathSciNet  Google Scholar 

  12. S. Chakraborty, D. Chatterjee, J. Fluid Mech. 592, 155 (2007)

    Article  ADS  Google Scholar 

  13. Z. Guo, C. Zheng, Baochang Shi, Phys. Rev. E 65, 046308 (2002)

    Article  ADS  Google Scholar 

  14. L. Belteran-Sanchez, D.M. Stefanescu, Metall. Mater. Trans. A 35, 2471 (2004)

    Article  Google Scholar 

  15. M.F. Zhu, S.Y. Lee, C.P. Hong, Phys. Rev. E 69, 061610 (2004)

    Article  ADS  Google Scholar 

  16. A.J.C. Ladd, J. Fluid Mech. 271, 285 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  17. C.K. Aidun, Y. Lu, E.-J. Ding, J. Fluid Mech. 373, 287 (1998)

    Article  ADS  Google Scholar 

  18. K. Iglberger, N. Thürey, U. Rüde, Comput. Math. Appl. 55, 1461 (2008)

    Article  MathSciNet  Google Scholar 

  19. Z.L. Guo, C.G. Zheng, B.C. Shi, Chin. Phys. 11, 366 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Jinyi Wu: writing and editing, data curation. Dongke Sun: investigation, validation. Jincheng Wang: supervision. Mingfang Zhu: conceptualization.

Corresponding author

Correspondence to Dongke Sun.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Sun, D., Wang, J. et al. Modeling of free dendritic growth in a gravity environment by lattice Boltzmann method. Eur. Phys. J. E 43, 30 (2020). https://doi.org/10.1140/epje/i2020-11958-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2020-11958-7

Keywords

Navigation