Skip to main content

Advertisement

Log in

Production of quasi-stellar neutron field at explosive stellar temperatures

  • Special Article - New Tools and Techniques
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Neutron-induced reactions on unstable isotopes play a key role in the nucleosynthesis i-, r-, p-, rp- and \(\nu p\)-processes occurring in astrophysical scenarios. While direct cross section measurements are possible for long-lived unstable isotopes using the neutron Time-of-Flight method, the currently available neutron intensities (\(\approx 10^{6}\) n/s) require large samples which are not feasible for shorter-lived isotopes. For the last three decades, the \(^{7}\)Li(pn) reaction has been used with thick lithium targets to provide a neutron field at a stellar temperature of \(\approx \) 0.3 GK with significantly higher intensity, allowing the successful measurement of many cross sections along the s-process path. In this paper we describe a novel method to use this reaction to produce neutron fields at temperatures of \(\approx \) 1.5–3.5 GK, relevant to scenarios such as convective shell C/Ne burning, explosive Ne/C burning, and core-collapse supernovae. This method will enable the use of high intensity proton beams with thick lithium targets to provide several orders of magnitude increase in the available neutron intensity relative to state-of-the-art neutron Time-of-Flight facilities, hence will allow direct cross section measurements of many important reactions at explosive temperatures, such as \(^{26}\)Al(np), \(^{75}\)Se(np) and \(^{56}\)Ni(np).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: No original data was produced for this publication except for the calculated values presented in Table 1.]

References

  1. M. Wiescher, F. Käppeler, K. Langanke, Annu. Rev. Astron. Astrophys. 50, 165–210 (2012)

    Article  ADS  Google Scholar 

  2. C. Fröhlich, J. Phys. G Nucl. Part. Phys. 41, 044003 (2014)

    Article  ADS  Google Scholar 

  3. T. Rauscher, AIP Adv. 4, 041012 (2014)

    Article  ADS  Google Scholar 

  4. J. José, Stellar Explosions: Hydrodynamics and Nucleosynthesis (CRC Press, Boca Raton, 2016)

    Book  Google Scholar 

  5. R. Reifarth et al., Eur. Phys. J. Plus 133, 424 (2018)

    Article  Google Scholar 

  6. C. Weiß et al., Nucl. Instrum. Method A 799, 0168–9002 (2015)

    Article  Google Scholar 

  7. W. Ratynski, F. Käppeler, Phys. Rev. C 37, 595 (1988)

    Article  ADS  Google Scholar 

  8. F. Käppeler, R. Gallino, S. Bisterzo, W. Aoki, Rev. Mod. Phys. 83, 157 (2011)

    Article  ADS  Google Scholar 

  9. I. Mardor, O. Aviv, M. Avrigeanu et al., Eur. Phys. J. A 54, 91 (2018)

    Article  ADS  Google Scholar 

  10. M. Paul et al., Eur. Phys. J. A 55, 44 (2019)

    Article  ADS  Google Scholar 

  11. M. Heil, S. Dababneh, A. Juseviciute, F. Käppeler, R. Plag, R. Reifarth, S. O’Brien, Phys. Rev. C 71, 025803 (2005)

    Article  ADS  Google Scholar 

  12. R. Reifarth et al., Phys. Rev. C 77, 015804 (2008)

    Article  ADS  Google Scholar 

  13. R. Reifarth, Y.A. Litvinov, Phys. Rev. ST Accel. Beams 17, 014701 (2014)

    Article  ADS  Google Scholar 

  14. R. Reifarth, K. Göbel, T. Heftrich, M. Weigand, B. Jurado, F. Käppeler, Y.A. Litvinov, Phys. Rev. Accel. Beams 20, 044701 (2017)

    Article  ADS  Google Scholar 

  15. H. Beer, F. Voss, R.R. Winters, Astrophys. J. Suppl. Ser. 80, 403–424 (1992)

    Article  ADS  Google Scholar 

  16. R. Reifarth, M. Heil, F. Käppeler, R. Plag, Nucl. Instrum. Methods A 608, 139–143 (2009)

    Article  ADS  Google Scholar 

  17. M. Friedman et al., Nucl. Instrum. Methods A 698, 117–126 (2013)

    Article  ADS  Google Scholar 

  18. M. Errera, G.A. Moreno, A.J. Kreiner, Nucl. Instrum. Methods B 349, 64–71 (2015)

    Article  ADS  Google Scholar 

  19. R. Pachuau, B. Lalremruata, N. Otuka, L.R. Hlondo, L.R.M. Punte, H.H. Thanga, Nucl. Sci. Eng. 187, 70–80 (2017)

    Article  Google Scholar 

  20. K. Sonnabend et al., J. Phys. Conf. Ser. 665, 012022 (2016)

    Article  Google Scholar 

  21. T. Adye, Unfolding algorithms and tests using RooUnfold. In PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding (CERN, Geneva, 2011). arXiv:1105.1160

  22. G. D’Agostini, Nucl. Instrum. Methods A 362, 487–498 (1995)

    Article  ADS  Google Scholar 

  23. A.J. Koning, D. Rochman, Nucl. Data Sheets 113, 2841 (2012)

    Article  ADS  Google Scholar 

  24. L. Damone et al., Phys. Rev. Lett. 121, 042701 (2018)

    Article  ADS  Google Scholar 

  25. C. Illadis et al., Astrophys. J. Suppl. S. 193, 16 (2011)

    Article  ADS  Google Scholar 

  26. R. Diel et al., Nature 439(7072), 45–47 (2006)

    Article  ADS  Google Scholar 

  27. H.P. Trautvetter et al., Z. Phys. A 323(1), 1–11 (1986)

    ADS  Google Scholar 

  28. P. Koehler, R. Kavanagh, R. Vogelaar, Y. Gledenov, Y. Popov, Phys. Rev. C 56(2), 1138–1143 (1997)

    Article  ADS  Google Scholar 

  29. L. De Smet, C. Wagemans, J. Wagemans, J. Heyse, J. Van Gils, Phys. Rev. C 76, 045804 (2007)

    Article  ADS  Google Scholar 

  30. P. Gastis et al., In Proc. 14th Int. Symp. on Nuclei in the Cosmos (NIC2016) (2016). https://doi.org/10.7566/JPSCP.14.020511.

  31. S. Kuvin et al., Bull. Am Phys. Soc. 64 (2019)

  32. W. Rapp, J. Görres, M. Wiescher, H. Schatz, F. Käppeler, Astrophys. J. 653, 474 (2006)

    Article  ADS  Google Scholar 

  33. G. Berg, Design of a large angle spectrometer for measurements of protons at 3–7 MeV, Tech. Report, Notre Dame Univ. IN, 18/9/2018

  34. E.P. Abel et al., J. Phys. G 46, 100501 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. G. Berg from the University of Notre Dame and Dr. E. Pollacco from CEA-Saclay for providing advice regarding ion transport and detection techniques. We would also like to thank Dr. M. Tessler from SNRC-SARAF for consultation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moshe Friedman.

Additional information

Communicated by Aurora Tumino

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedman, M. Production of quasi-stellar neutron field at explosive stellar temperatures. Eur. Phys. J. A 56, 155 (2020). https://doi.org/10.1140/epja/s10050-020-00170-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00170-4

Navigation