Skip to main content
Log in

Comparative Transcriptomic Analysis of Two Rice (Oryza sativa L.) Male Sterile Line Seed Embryos Under Accelerated Aging

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Seed aging is a complex and irreversible process during seed development and storage. The quality of parental seeds affects yield and quality of hybrid rice seeds directly. However, little is known about the mechanism of the accelerated aging seeds in hybrid rice photoperiod-thermo-sensitive genic male sterile (PTGMS) lines. RNA-Seq technique was performed by using seed embryos of two PTGMS lines, Y58S (YS) and Zhun S (ZS), under the restrictive conditions (95% relative humidity and 45 °C) for 0 day, 5 days, 7 days, and 10 days. In total, 1198, 487, 1308, 396, and 669 differentially expressed genes (DEGs) were identified between adjacent time periods of accelerated aging treatment in the ZS and YS. Gene Ontology (GO) analysis revealed the DEGs enriched in the starch catabolic process and sucrose catabolic process. It also showed that many genes were enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways such as starch and sucrose metabolism, plant-pathogen interaction, and plant hormone signal transduction. In addition, 34 candidate genes were selected to the following phylogenetic analysis and different gene expression profiles. Finally, several key candidate genes of seed aging were identified, containing a rice sucrose synthase Os07g0616800 and an unknown gene Os12g0161500, by quantitative real-time PCR. Together, these results established a good foundation for studying the molecular mechanism of rice seed storability and also provide new insights into the PTMGS line seed storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

AKR:

analdo-ketoreductase

DEGs:

differentially expressed genes

FC:

fold change

FPKM:

fragments per kilobase of transcript per million fragments

GC:

guanine + cytosine

GO:

Gene Ontology

Hsfs:

heat shock transcription factors

IsoAsp:

isoaspartyl

JA:

jasmonic acid

KEGG:

Kyoto Encyclopedia of Genes and Genomes

PIMT:

protein-l-isoaspartyl methyltransferase

PTGMS:

photoperiod-thermo-sensitive genic male sterile

qRT-PCR:

quantitative real-time polymerase chain reaction

QTL:

quantitative trait loci

ROS:

reactive oxygen species

TFs:

transcription factors

UDP:

uridine 5′-diphosphate

YS:

Y58S

ZS:

Zhun S

References

  • Almoguera C, Prieto-Dapena P, Díaz-Martín J, Espinosa JM, Carranco R, Jordano J (2009) The HaDREB2 transcription factor enhances basal thermotolerance and longevity of seeds through functional interaction with HaHSFA9. BMC Plant Biol 9:75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anonymous (1983) Seed vigour testing handbook, p 88

    Google Scholar 

  • Borisjuk L, Rolletschek H (2009) The oxygen status of the developing seed. New Phytol 182:17–30

    Article  PubMed  CAS  Google Scholar 

  • Broun P (2004) Transcription factors as tools for metabolic engineering in plants. Curr Opin Plant Biol 7:202–209

    Article  PubMed  CAS  Google Scholar 

  • Carranco R, Espinosa JM, Prieto-Dapena P, Almoguera C, Jordano J (2010) Repression by an auxin/indole acetic acid protein connects auxin signaling with heat shock factor-mediated seed longevity. Proc Natl Acad Sci 107:21908–21913

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang Z et al (2016) Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene. Proc Natl Acad Sci 113:14145–14150

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen B, Yin G, Whelan J, Zhang Z, Xin X, He J, Chen X, Zhang J, Zhou Y, Lu X (2019) Composition of mitochondrial complex I during the critical node of seed aging in Oryza sativa. J Plant Physiol 236:7–14

    Article  PubMed  CAS  Google Scholar 

  • Cheng H, Liu H, Deng Y, Xiao J, Li X, Wang S (2015) The WRKY45-2 WRKY13 WRKY42 transcriptional regulatory cascade is required for rice resistance to fungal pathogen. Plant Physiol 167:1087–1099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Day S, Kaya MD (2008) Relationship between seed size and NaCl on germination, seed vigor and early seedling growth of sunflower (Helianthus annuus L.). Afr J Agric Res 3:787–791

    Google Scholar 

  • Deng Q, Yuan L (1998) Fertility stability of P(T) GMS lines in rice and its identification techniques. Chinese Journal of Riceence 12:200–206

    Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Egli DB, TeKrony DM, Heitholt JJ, Rupe J (2005) Air temperature during seed filling and soybean seed germination and vigor. Crop Sci 45:1329

    Article  Google Scholar 

  • Fu Y, Ahmed Z, Diederichsen A (2015) Towards a better monitoring of seed ageing under ex situ seed conservation. Conservation Physiology 3:v26

    Article  CAS  Google Scholar 

  • Fu C et al (2017) Transcriptomic analysis reveals new insights into high-temperature-dependent glume-unclosing in an elite rice male sterile line. Front Plant Sci 8

  • Gantet P, Memelink J (2002) Transcription factors: tools to engineer the production of pharmacologically active plant metabolites. Trends Pharmacol Sci 23:563–569

    Article  PubMed  CAS  Google Scholar 

  • Gao J et al (2016) Comparative proteomic analysis of seed embryo proteins associated with seed storability in rice (Oryza sativa L.) during natural aging. Plant Physiol Biochem 103:31–44

    Article  PubMed  CAS  Google Scholar 

  • Gayen D, Ali N, Sarkar SN, Datta SK, Datta K (2015) Down-regulation of lipoxygenase gene reduces degradation of carotenoids of golden rice during storage. Planta 242:353–363

    Article  PubMed  CAS  Google Scholar 

  • Gelin JR, Elias EM, Kianian SF (2006) Evaluation of two durum wheat (Triticum turgidum L. var. durum) crosses for pre-harvest sprouting resistance. Field Crop Res 97:188–196

    Article  Google Scholar 

  • Guo H et al (2017) Transcriptome analysis of neo-tetraploid rice reveals specific differential gene expressions associated with fertility and heterosis. Sci Rep 7:40139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haigler CH, Ivanova-Datcheva M, Hogan PS, Salnikov VV, Hwang S, Martin K, Delmer DP (2001) Carbon partitioning to cellulose synthesis. Plant Mol Biol 47:29–51

    Article  PubMed  CAS  Google Scholar 

  • Hamberger B, Ellis M, Friedmann M, de Azevedo SC, Barbazuk B, Douglas CJ (2007) Genome-wide analyses of phenylpropanoid-related genes in Populus trichocarpa, Arabidopsis thaliana, and Oryza sativa: the Populus lignin toolbox and conservation and diversification of angiosperm gene families. Can J Bot 85:1182–1201

    Article  CAS  Google Scholar 

  • Hang NT et al (2015) Mapping QTLs related to rice seed storability under natural and artificial aging storage conditions. Euphytica 203:673–681

    Article  CAS  Google Scholar 

  • Hesse H, Willmitzer L (1996) Expression analysis of a sucrose synthase gene from sugar beet (Beta vulgaris L.). Plant Mol Biol 30:863–872

    Article  PubMed  CAS  Google Scholar 

  • Hua-Min SI, Liu WZ, Ya-Ping FU, Sun ZX, Guo-Cheng HU (2011) Current situation and suggestions for development of two-line hybrid rice in China. Chin J Rice Sci

  • Huang C, Lo P, Huang L, Wu S, Yeh C, Lu C (2015) A single-repeat MYB transcription repressor, MYBH, participates in regulation of leaf senescence in Arabidopsis. Plant Mol Biol 88:269–286

    Article  PubMed  CAS  Google Scholar 

  • Jiang L et al (2011a) Synthetic spike-in standards for RNA-seq experiments. Genome Res 21:1543–1551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang W, Lee J, Jin YM, Qiao Y, Piao R, Jang SM, Woo MO, Kwon SW, Liu X, Pan HY, du X, Koh HJ (2011b) Identification of QTLs for seed germination capability after various storage periods using two RIL populations in rice. Molecules and Cells 31:385–392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2013) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199–D205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • King SP, Lunn JE, Furbank RT (1997) Carbohydrate content and enzyme metabolism in developing canola siliques. Plant Physiol 114:153–160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kitin P, Voelker SL, Meinzer FC, Beeckman H, Strauss SH, Lachenbruch B (2010) Tyloses and phenolic deposits in xylem vessels impede water transport in low-lignin transgenic poplars: a study by cryo-fluorescence microscopy. Plant Physiol 154:887–898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kotak S, Vierling E, Baumlein H, Koskull-Doring PV (2007) A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. THE PLANT CELL ONLINE 19:182–195

    Article  CAS  Google Scholar 

  • LI L et al (2012) Identification of quantitative trait loci for seed storability in rice (Oryza sativa L.). Plant Breed 131:739–743

    Article  CAS  Google Scholar 

  • Li Y, Wang Y, Wang X, Xue H, Pritchard HW (2017) Changes in the mitochondrial protein profile due to ROS eruption during ageing of elm (Ulmus pumila L.) seeds. Plant Physiol Biochem 114:72–87

    Article  PubMed  CAS  Google Scholar 

  • Lin Q et al (2015) Genetic dissection of seed storability using two different populations with a same parent rice cultivar N22. Breed Sci 65:411–419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y, Chu C, Wang X (2014) OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol Biol 84:19–36

    Article  PubMed  CAS  Google Scholar 

  • Liu SJ, Xu HH, Wang WQ, Li N, Wang WP, Lu Z, Møller IM, Song SQ (2016) Identification of embryo proteins associated with seed germination and seedling establishment in germinating rice seeds. J Plant Physiol 196-197:79–92

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Liu Y, Jia Y, Wei J, Wang S, Liu X, Zhou Y, Zhu Y, Gu W, Ma H (2017) Gm1-MMP is involved in growth and development of leaf and seed, and enhances tolerance to high temperature and humidity stress in transgenic Arabidopsis. Plant Sci 259:48–61

    Article  PubMed  CAS  Google Scholar 

  • Luo D, Xu H, Liu Z, Guo J, Li H, Chen L, Fang C, Zhang Q, Bai M, Yao N, Wu H, Wu H, Ji C, Zheng H, Chen Y, Ye S, Li X, Zhao X, Li R, Liu YG (2013) A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat Genet 45:573–577

    Article  PubMed  CAS  Google Scholar 

  • McDonald MB (1999) Seed deterioration: physiology, repair and assessment. SeedSci. Technol, In, pp 177–237

    Google Scholar 

  • Min CW et al (2017) In-depth proteomic analysis of Glycine max seeds during controlled deterioration treatment reveals a shift in seed metabolism. J Proteome 169:125–135

    Article  CAS  Google Scholar 

  • Mittal D, Chakrabarti S, Sarkar A, Singh A, Grover A (2009) Heat shock factor gene family in rice: genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses. Plant Physiol Biochem 47:785–795

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Lin S, Yano M, Nagamine T (2002) Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.). Theor Appl Genet 104:981–986

    Article  PubMed  CAS  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621

    Article  PubMed  CAS  Google Scholar 

  • Narayana NK et al. (2017) Aldo-ketoreductase 1 (AKR1) improves seed longevity in tobacco and rice by detoxifying reactive cytotoxic compounds generated during ageing. Rice 10

  • Patel RK, Jain M (2012) NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7:e30619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajjou L, Lovigny Y, Groot SPC, Belghazi M, Job C, Job D (2008) Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiol 148:620–641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ratajczak E, Małecka A, Ciereszko I, Staszak AM (2019) Mitochondria are important determinants of the aging of seeds. Int J Mol Sci 20:1568

    Article  PubMed Central  CAS  Google Scholar 

  • Ren G, Peng M, Tang WJ, Cai-Guo XU, Xing YZ (2005) QTL associated with seed aging in rice. Acta Agron Sin

  • Sasaki K, Fukuta Y, Sato T (2005) Mapping of quantitative trait loci controlling seed longevity of rice (Oryza sativa L.) after various periods of seed storage. Plant Breed 124:361–366

    Article  Google Scholar 

  • Schmelz EA et al (2011) Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize. Proc Natl Acad Sci U S A 108:5455–5460

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwember AR, Bradford KJ (2010) Quantitative trait loci associated with longevity of lettuce seeds under conventional and controlled deterioration storage conditions. J Exp Bot 61:4423–4436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shankar R, Bhattacharjee A, Jain M (2016) Transcriptome analysis in different rice cultivars provides novel insights into desiccation and salinity stress responses. Sci Rep 6

  • Suzuki A, Suzuki T, Tanabe F, Toki S, Washida H, Wu CY, Takaiwa F (1997) Cloning and expression of five myb-related genes from rice seed. Gene 198:393–398

    Article  PubMed  Google Scholar 

  • Takano K (1993) Advances in cereal chemistry and technology in Japan

  • Toyomasu T (2008) Recent advances regarding diterpene cyclase genes in higher plants and fungi. Biosci Biotechnol Biochem 72:1168–1175

    Article  PubMed  CAS  Google Scholar 

  • Wang S et al (2015a) The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet 47:949–954

    Article  CAS  PubMed  Google Scholar 

  • Wang Y et al (2015b) Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet 47:944–948

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li Y, Xue H, Pritchard HW, Wang X (2015c) Reactive oxygen species-provoked mitochondria-dependent cell death during ageing of elm (Ulmus pumila L.) seeds. Plant J 81:438–452

    Article  PubMed  CAS  Google Scholar 

  • Waterworth WM, Bray CM, West CE (2015) The importance of safeguarding genome integrity in germination and seed longevity. J Exp Bot 66:3549–3558

    Article  PubMed  CAS  Google Scholar 

  • Wei Y, Xu H, Diao L, Zhu Y, Xie H, Cai Q, Wu F, Wang Z, Zhang J, Xie H (2015) Protein repair l-isoaspartyl methyltransferase 1 (PIMT1) in rice improves seed longevity by preserving embryo vigor and viability. Plant Mol Biol 89:475–492

    Article  PubMed  CAS  Google Scholar 

  • Yin X, He D, Gupta R, Yang P (2015) Physiological and proteomic analyses on artificially aged Brassica napus seed Frontiers in Plant Science 6

  • Zeng DL, Guo LB, Xu YB, Yasukumi K, Zhu LH, Qian Q (2006) QTL analysis of seed storability in rice. Plant Breed 125:57–60

    Article  CAS  Google Scholar 

  • Zhang FZF et al (2012) Genome-wide gene expression profiling of introgressed indica rice alleles associated with seedling cold tolerance improvement in a japonica rice background. BMC Genomics

  • Zhang H et al (2013) Mutation in CSA creates a new photoperiod-sensitive genic male sterile line applicable for hybrid rice seed production. Proc Natl Acad Sci 110:76–81

    Article  PubMed  Google Scholar 

  • Zhang Y et al (2016) Transcriptome analysis highlights defense and signaling pathways mediated by rice pi21 gene with partial resistance to Magnaporthe oryzae. Frontiers in Plant Science 7

  • Zhang X et al (2017) Breeding and study of two new photoperiod- and thermo-sensitive genic male sterile lines of polyploid rice (Oryza sativa L.). Scientific Reports 7

  • Zhang W, Sun P, He Q, Shu F, Deng H (2018) Transcriptome analysis of near-isogenic line provides novel insights into genes associated with panicle traits regulation in rice. PLoS One 13:e199077

    Google Scholar 

Download references

Funding

The project has been funded by the National Key Research and Development Program of China (2018YFD0100900), Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance Project (SYKB201705), and Crop Cultivation and Farming Foundation for the Talents of Hunan Agricultural University (YXQN2018-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiqing Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Message

The team found that DEGs identified from seed embryos were clustered into different processes and metabolisms. Meanwhile, several key candidate genes of seed aging were identified, containing Os07g0616800 and Os12g0161500, by quantitative real-time PCR. Together, these results established a good foundation for studying the molecular mechanism of rice seed storability and also provide new insights into the PTMGS line seed storage.

Electronic Supplementary Material

ESM 1

(XLSX 121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., He, J., Yan, Y. et al. Comparative Transcriptomic Analysis of Two Rice (Oryza sativa L.) Male Sterile Line Seed Embryos Under Accelerated Aging. Plant Mol Biol Rep 38, 282–293 (2020). https://doi.org/10.1007/s11105-020-01198-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-020-01198-y

Keywords

Navigation